Federated learning for vision-based obstacle avoidance in mobile robots

Бесплатный доступ

Federated learning (FL) is a machine learning approach that allows multiple devices or systems to train a model collaboratively, without exchanging their data. This is particularly useful for autonomous mobile robots, as it allows them to train models customized to their specific environment and tasks, while keeping the data they collect private. Research Objective to train a model to recognize and classify different types of objects, or to navigate around obstacles in its environment. Materials and methods we used FL to train models for a variety of tasks, such as object recognition, obstacle avoidance, localization, and path planning by an autonomous mobile robot operating in a warehouse FL. We equipped the robot with sensors and a processor to collect data and perform machine learning tasks. The robot must communicate with a central server or cloud platform that coordinates the training process and collects model updates from different devices. We trained a neural network (CNN) and used a PID algorithm to generate a control signal that adjusts the position or other variable of the system based on the difference between the desired and actual values, using the relative, integrative and derivative terms to achieve the desired performance. Results through careful design and execution, there are several challenges to implementing FL in autonomous mobile robots, including the need to ensure data privacy and security, and the need to manage communications and the computational resources needed to train the model. Conclusion. We conclude that FL enables autonomous mobile robots to continuously improve their performance and adapt to changing environments and potentially improve the performance of vision-based obstacle avoidance strategies and enable them to learn and adapt more quickly and effectively, leading to more robust and autonomous systems.

Еще

Federated learning (fl), neural network (cnn), internet of things (iot), obstacle avoidance, vision-based, mobile robots

Короткий адрес: https://sciup.org/147241767

IDR: 147241767   |   DOI: 10.14529/ctcr230304

Список литературы Federated learning for vision-based obstacle avoidance in mobile robots

  • Konecny J. et al. Federated learning: Strategies for improving communication efficiency. 2016. arXiv preprint arXiv: 1610.05492. DOI: N/A (not published in a journal yet)
  • Kairouz P. et al. Advances and open problems in federated learning. 2019. arXiv preprint arXiv: 1912.04977. DOI: N/A (not published in a journal yet)
  • McMahan H.B. et al. Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. 2017. P. 1273-1282). DOI: 10.7490/f1000research.1115539.1
  • Yang Q. et al. Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST). 2019;10(2):1-19. DOI: 10.1145/3329874
  • Zhang Y., Liu J., Yang Y. Unified Learning of Vision-Based Obstacle Avoidance for Mobile Robots. IEEE Robotics and Automation Letters. 2018;3(4):3675-3682. DOI: 10.1109/LRA.2018.2854793
  • Zhang Y., Wang Y., Chen J., Yang Y. Federated Learning for Vision-Based Obstacle Detection in Unmanned Aerial Systems. IEEE Transactions on Vehicular Technology. 2019;68(6):5556-5564. DOI: 10.1109/TVT.2019.2903571
  • Liu J., Zhang Y., Yang Y. Unified Learning of Vision-Based Navigation for Mobile Robots. IEEE Transactions on Robotics. 2018;34(5):1205-1212. DOI:10.1109/TRO.2018.2854078
  • Mudaris H., Akbarzadeh A., Kayacan E. Federated learning-based approach for vision-based barrier detection and avoidance in mobile robots. IEEE Robotics and Automation Letters. 2020;5(2):3227-3234. DOI: 10.1109/LRA.2020.2961299
  • Chen E.E., Huang C.M., Lin C.Y. An instructional approach to standardized obstacle detection and avoidance for mobile robots. Robotics and Autonomous Systems. 2019;116:142-152. DOI: 10.1016/j.robot.2019.03.009
  • Agarwal N., Gupta R., Dasgupta S. A distributed deep learning approach for vision-based obstacle detection and avoidance in mobile robots. IEEE Robotics and Automation Letters. 2018;3(4):3177-3184. DOI:10.1109/LRA.2018.2867125
  • Goodfellow I., Bengio Y., Courville A. Deep learning. MIT Press. Google Scholar: https://scholar.google.com/scholar?q=Deep+learning+goodfellow&btnG=&hl=en&as_sdt=0%2C5. DOI: 10.1016/B978-0-12-810408-8.00001-3
  • Argall B.D., Chernova S., Veloso M., Browning B. A survey of robot learning from demonstration. Robotics and Autonomous Systems. 2009;57(5):469-483. DOI: 10.1016/j.robot.2008.10.024
  • Lee D., Lee J., Cho K. Meta-learning for robotics: A survey. IEEE Transactions on Neural Networks and Learning Systems. 2019;30(10):2924-2940. DOI: 10.1109/TNNLS.2018.2884123
  • Chen S., Li L., Li Q., Zhou D., Xu B. A Review on the Sim-to-Real Transfer of Robotics. Complexity. 2021. P. 1-21. DOI: 10.1155/2021/5550982
  • Zhu Y., Yang S., Yang C. A federated learning framework for privacy-preserving autonomous driving. IEEE Transactions on Vehicular Technology. 2020;69(1): 1027—1036. DOI: 10.1109/TVT.2019.2950774
  • Xu C., Li Y., Li X., Zhang Y. A federated deep learning architecture for privacy-preserving perception of self-driving cars. Sensors. 2021;21(1):162. DOI: 10.3390/s21010162
  • Li Z., Liang X., Chen K. Multi-agent reinforcement learning for distributed cooperative obstacle avoidance in complex environments. Neurocomputing. 2019;339:149-163. DOI: 10.1016/j.neucom.2018.11.081
  • Hua Y., Wang R., Qiao H. Sim-to-Real Reinforcement Learning for Robotics: A Comprehensive Review. IEEE Transactions on Cognitive and Developmental Systems. 2022. P. 1-16. DOI: 10.1109/TCDS.2022.3153253
  • Yu X., Qiu Y., Chen S., Zhou D. Sim-to-real transfer in robotics: A comprehensive review of deep learning techniques. Journal of Field Robotics. 2022;39(4):721-736. DOI: 10.1002/rob.22004
  • Ishida K., Hsieh M.A., Tomizuka M. Challenges in applying reinforcement learning to industrial robots. Annual Reviews in Control. 2021;52:210-224. DOI: 10.1016/j.arcontrol.2021.08.005
  • Pomerleau D.A., Thorpe C.E., Sirkka J.K. Vision-based obstacle avoidance. The Journal of Robotics and Autonomous Systems. 1989;6(3):223-234. DOI: 10.1016/S0921-8890(05)80034-8
  • Yang B., Liu W., Hu H. A vision-based obstacle detection and avoidance system for UAVs using deep neural networks. Sensors. 2018;18(7):2152. DOI: 10.3390/s18072152
  • Bency R.A., Selvi S.T., Bhagyaveni M.S. Vision-Based Obstacle Detection and Avoidance using Deep Learning. In: 2020 5th International Conference on Computing, Communication and Security (ICCCS). 2020. P. 1-7.
  • Kato H., Endo T., Takahashi T., Ito K. Vision-based obstacle avoidance using deep convolu-tional neural network with high-level features. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2015. P. 131-136). DOI: 10.1109/ROBIO.2015.7418677
  • Kim S.J., Kim B.H., Cho H.G. Vision-based Obstacle Avoidance of Autonomous Mobile Robots using Deep Learning. Journal of Institute of Control, Robotics and Systems. 2018;24(5):420-427. DOI: 10.5302/J.ICROS.2018.18.0056
  • Shahbazi M. Machine learning-based approaches for obstacle detection and avoidance in autonomous vehicles: A review. Expert Systems with Applications. 2021; 172:114535. DOI: 10.1016/j.eswa.2021.114535
  • Rao V.P., Rautaray S.S., Panda R. Vision-based obstacle detection and avoidance for unmanned aerial vehicles: A review. Journal of Intelligent & Robotic Systems. 2020;98(1):1-23. DOI: 10.1007/s10846-019-01136-7
  • Nikouei M.A., Gheisari S., Hosseini M.G. An efficient method for real-time pedestrian detection and tracking using deep learning. Applied Soft Computing. 2020;87:105996. DOI: 10.1016/j.asoc.2019.105996
  • Hu S., Xue B., Xia H. Real-time obstacle detection using stereo vision for unmanned ground vehicles. Journal of Field Robotics. 2019;36(4):859-881. DOI: 10.1002/rob.21889
  • Jeon H.G., Kim J.Y., Kim J. A survey of obstacle avoidance methods for unmanned ground vehicles. Applied Sciences. 2020;10(2):480. DOI: 10.3390/app10020480
  • Bojarski M., Del Testa D., Dworakowski D., Firner B., Flepp B., Goyal P., Jackel L.D., Monfort M., Muller U., Zhang J., Zhang X., Zhao J., Zieba K. End to end learning for self-driving cars. 2016. arXiv:1604.07316
  • Deng Z., Yang Z., Chen L., Peng F. A survey on deep learning for intelligent vehicle autonomous driving. IEEE Transactions on Intelligent Transportation Systems. 2018;19(12):3808-3824. DOI: 10.1109/TITS.2018.2846598
  • He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. P. 770-778. DOI: 10.1109/CVPR.2016.90
  • Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv preprint arXiv: 1409.1556.
  • Li H., Ouyang Y., Chen X., Chen J. Federal machine learning for autonomous vehicles: A decentralized learning approach. IEEE Transactions on Intelligent Transportation Systems. 2019;21(10):4252-4262. DOI: 10.1109/TITS.2019.2917806
  • Bonawitz K., Eichner H., Grieskamp W., Huba D., Ingerman A., Ivanov V., Kiddon C., Konecny J., McMahan H.B., Vanderveen G., Wei D. Towards federated learning at scale: System design. 2019. arXiv preprint arXiv: 1902.01046.
  • Krizhevsky A., Sutskever I., Hinton G.E. ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems. 2012. P. 1097-1105.
  • Omidvar M.N., Rahmani R., Zohoori M., Tafazzoli F. Autonomous Navigation of Mobile Robots using Computer Vision and Control Theory. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). 2020. P. 8786-8792.
  • Deshmukh A., Gupta M. PID Controller: A review of literature. International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT). 2021;6(3):48-53. DOI: 10.32628/IJSRCSEIT.0639
  • Kehoe T.B. et al. Using probabilistic reasoning over time to enable human-robot collaboration. The International Journal of Robotics Research. 2013:32(14): 1611-1628. DOI: 10.1177/0278364913495723
  • Karpathy A. et al. Federated learning for autonomous vehicles. 2020. arXiv preprint arXiv:2002.11242. DOI: N/A (since it is a preprint and not yet published in a peer-reviewed journal)
  • Sheller M., Rouhani B.D. Privacy and Security in Federated Learning: Recent Advances and Future Directions. IEEE Access. 2021;9:27054-27072. DOI: 10.1109/ACCESS.2021.3060827
  • McMahan B., Moore E., Ramage D., Hampson S., Arcas B.A. Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. 2017. P. 1273-1282. Available at: http://proceedings.mlr.press/v54/ mcmahan17a.html.
  • Coumans E. Bullet physics simulation: Recent developments and future challenges. In: Eurographics. 2010. P. 45-63. DOI: 10.2312/egst.20101005
  • Erleben K., Sporring J., Henriksen K. Physics-based animation. In: Proceedings of the 32nd annual conference on Computer graphics and interactive techniques. 2005. P. 707-712. DOI: 10.1145/1186822.1073219
  • Koenig N., Howard A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: Proceedings of the 2004IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2004). 2004. Vol. 3. P. 2149-2154. DOI: 10.1109/IROS.2004.1389754
  • Rohmer E., Singh S.P.N., Freese M. V-REP: A versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013. P. 13211326. DOI: 10.1109/IROS.2013.6696545
  • Someya K., Kinoshita Y., Tsuji M., Iwata M. Privacy-Preserving Machine Learning for Healthcare Services Using Federated Learning. In: Proceedings of the 13th International Conference on Human System Interaction. 2021. P. 551-556. DOI: 10.1109/HSI52188.2021.9471561
  • Kim J.H., Song J.W., Kim K. Edge Computing Based on Federated Learning for Privacy and Security in FinTech. Applied Sciences. 2021;11(14):6329. DOI: 10.3390/app11146329
  • Ji X., Dong X., Zhang C., Wang Y., Yang M., Ma J. Federal Learning for Fraud Detection in Insurance Industry. In: Proceedings of the 6th International Conference on Computational Intelligence and Applications. 2021. P. 75-80. DOI: 10.1145/3460421.3460444
  • Yuan Z., Liu J., Chen L., Jiang J. Federated Learning for Internet of Things: Opportunities, Challenges, and Solutions. Sensors. 2021;21(1):266. DOI: 10.3390/s21010266
  • Mao K., Lu Y., Ji M., Feng X., Wang L., Zhou Z. A Survey on Federated Learning for Edge Intelligence: Challenges and Solutions. IEEE Access. 2021;9:42500-42512. DOI: 10.1109/ACCESS.2021.3079187
Еще
Статья научная