Физиологическая роль оксида азота (NO) у растительных организмов

Автор: Глянько А.К., Митанова Н.Б., Степанов А.В.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Рубрика: Обзор

Статья в выпуске: 3 т.5, 2009 года.

Бесплатный доступ

На основе знаний о функциях оксида азота (NO) в животных тканях обобщены литературные данные о физиологической роли NO у растительных организмов. Подчеркивается многофункциональность NO у различных организмов, обусловленная высокой реакционностью этой молекулы, ее способностью реагировать с белками и низкомолекулярными веществами. Рассмотрены вопросы участия NO в различных физиологических процессах, возможные механизмы синтеза NO у растений, взаимодействие с другими эндогенными молекулами, а также механизмы, предотвращающие токсический эффект NO.

Оксид азота (no), синтаза оксида азота (nos), nos-подобная реакция, нитрозилирование, нитрование белков, нитрозативный стресс

Короткий адрес: https://sciup.org/14323475

IDR: 14323475

Список литературы Физиологическая роль оксида азота (NO) у растительных организмов

  • Глянько А.К., Васильева Г.Г., Ищенко А.А., Миронова Н.В., Путилина Т.Е. (2008) Активность НАДФН-оксидазы в корнях проростков гороха при ризобиальной инфекции в зависимости от действия неблагоприятных факторов. Вестник Харьковского нац. аграр. ун-та. Серия Биология, 3 (15), 6-14.
  • Глянько А.К., Ищенко А.А., Митанова Н.Б., Васильева Г.Г. (2009) НАДФН-оксидаза растений. Вестник Харьковского нац. аграр. ун-та. Серия Биология, 2 (17), 3-17.
  • Глянько А.К., Васильева Г.Г., Митанова Н.Б., Ищенко А.А. (2009а). Влияние минерального азота на бобоворизобиальный симбиоз. Известия РАН. Серия биол., 36, 302-312.
  • Дмитриев А.П. (2004) Сигнальная роль оксида азота у растений. Цитология и генетика, 38, 67-75.
  • Дубовская Л.В., Колеснева Е.В., Князев Д.М., Волотовский И.Д. (2007) Защитная роль оксида азота при окислительном стрессе, индуцированном в растениях табака пероксидом водорода. Физиология растений, 54, 847-855.
  • Колупаев Ю.Е., Карпец Ю.В. (2009) Активные формы кислорода при адаптации растений к стрессовым температурам. Физиология и биохимия культ. растений, 49, 95-108.
  • Меньщикова Е.Б., Зенков Н.К., Реутов В.П. (2000) Оксид азота и NO-синтазы в организме млекопитающих при различных функциональных состояниях. Биохимия, 65, 485-503.
  • Проскуряков С.Я., Конопляников А.Г., Иванников А.И., Скворцов В.Г. (1999) Биология окиси азота. Успехи соврем. биологии, 119, 380-395.
  • Реутов В.П.(1995) Цикл оксида азота в организме млекопитающих. Успехи биол. химии. 35, 189-228.
  • Реутов В.П., Сорокина Е.Г., Косицын Н.С. (2005) Проблемы оксида азота и цикличности в биологии и медицине. Успехи соврем. биологии, 125, 41-65.
  • Тарчевский И.А. (2000) Сигнальные системы клеток растений. Наука, М.
  • Филиппович С.Ю, Бачурина Г.П., Крицкий М.С. (2007) Исследование выброса нитрата и нитрита из клеток мутантов Neurospora crassa, лишенных нитрат-и нитритредуктазной активности. Прикладная биохимия и микробиология, 43, 331-337.
  • Alamillo J.M. and Garcia-Olmedo F. (2001) Effect of urate, a natural inhibitor of peroxynitritemediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. Plant J., 25, 529-540.
  • Anderson L. and Mansfield T.A. (1979) The effects of nitric oxide pollution on the growth of tomato. Environ. Pollution, 20, 113-121. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant A. thaliana (2000). Nature, 408, 796-815.
  • Arasimowicz M. and Floryszak-Wieczorek J. (2007) Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Science, 172, 876-887.
  • Arnaud N., Murgia I., Boucherez J., Briat J.F., Cellier F. and Gaymard F. (2006) An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis At Fee1 ferritin gene expression. J. Biol. Chem., 281, 23579-23588.
  • Asai S. and Yoshioka H. (2008) The role of radical burst via MAPK signaling in plant immunity. Plant Signaling Behavior, 3, 920-922.
  • Asai S. and Yoshioka H. (2009) Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Mol. Plant-Microbe Interac., 22, 619-629.
  • Balavoine G.C. and Geletii Y.V. (1999) Peroxynitrite scavenging by different antioxidants. Part 1: convenient assay. Nitric Oxide, 3, 40-45.
  • Barroso J.B., Corpas F.J., Carreras A., Sandalio L.M., Valderrama R., Palma J.M., Lupianez J.A. and del Rio L.A. (1999) Localization of nitric oxide synthase in plant peroxisomes. J. Biol. Chem., 274, 36729-36733.
  • Beck K-F., Eberhardt W., Frank S., Huwiler A., Mebmer U.K.,Muhl H. and Pfeilschifter J.P. (1999) Inducible NO synthase: role in cellular signaling. J. Exp. Biol., 202, 645-653.
  • Besson-Bard A., Pugin A. and Wendehenne D. (2008) New insights into nitric oxide signaling in plants. Annu. Rev. Plant Biol., 59, 21-39.
  • Bethke P.C., Badger M.P. and Jones R.L. (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell, 16, 332-341.
  • Beligni M.W. and Lamattina L. (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyls elongation, there lightinducible responses in plants. Planta, 210, 215221.
  • Bowler C., Neuhaus G.,Yamagata H. and Chua N-H. (1994) Cyclic GMP and calcium mediate phytochrome phototransduction. Cell, 77, 7381.
  • Bright J., Desikan R., Hancock J.T., Weir I.S. and Neill S.J. (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J., 45, 113-122.
  • Chandok M.R., Ytterberg A.J., van Wijk K.J., Klessig D.F. (2003) The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell, 113, 469-482.
  • Corpas F.J., Palma J.M., del Rio L.A. and Barroso J.B. (2009) Evidence supporting the existence of l-arginine-dependent nitric oxide synthase activity in plants. New Physiol., 184, 9-14.
  • Corpas F.J., Chaki M., Fernandez A., Valderrama R., Palma J.M., Carreras A., Begara-Morales J.C., Airaki M., del Rio L. and Barroso J.B. (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol., 2008, 1711-1722.
  • Сorpas F.J., Barroso J.B. Carreras A., Quiros M., Leon A. M., Romero-Puertas M.C., Esteban F.J., Valderrama R., Palma J.M., Sandalio L.M., Gomez M. and Del Rio L.A. (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol., 136, 2722-2733.
  • Corpas F.J., Barroso J.B., Carreras A., Valderrama R., Palma J.M., Leon A.M. and del Rio L. (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta, 224, 246-254.
  • Correa-Aragunde N., Graziano M. and Lamattina L. (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta, 218, 900-905.
  • Courtois C., Besson A., Dahan J., Bourque S., Dobrowolska G., Pugin A. and Wendehenne D. (2008) Nitric oxide signaling in plants: interplays with Ca2-and protein kinases. J. Exp. Bot., 59, 155-163.
  • Сrawford N.M. (2006) Mechanisms for nitric oxide synthesis in plants. J. Exp. Bot., 57, 471-478.
  • Crawford M.N., Galli M., Tischner R., Heimer Y.M., Okamoto M. and Mack A. (2006) Response to Zemojtel et al.: Plant nitric oxide synthase: back to square one. Trend Plant Sci., 11, 526527.
  • Сulotta E. and Koshland D.E. (1992) NO news is good news. Science, 258, 1862-1865.
  • Cueto M., Hernandez-Perera O., Martin R., Bentura M.L., Rodrigo J., Lamas S. and Golvano M.P. (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett., 398, 159-164.
  • Delledonne M., Xia Y., Dixon R.A. and Lamb C. (1998) Nitric oxide functions as a signal in plant disease resistance. Nature, 394, 585-588.
  • Delledonne M., Zeier J., Marocco A. and Lamb C. (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. USA, 98, 13454-13459.
  • Desikan R., Burnett E.C., Hancock J.T. and Neill S.J. (1998) Harpin and hydrogen peroxide induce the expression of homologue of gp91-phox in Arabidopsis thaliana suspension cultures. J. Exp. Bot., 49, 1767-1771.
  • Dordas C., Rivoal J. and Hill R.D. (2003) Plant haemoglobins, nitric oxide and hypoxis stress. Ann. Bot.. 91, 173-178.
  • Durner J., Wendehemme D. and Klessig D.F. (1998) Defense gene induction in tobacco by nitric oxide., cyclic GMP and cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA, 95, 10328-10333.
  • Durner J., Gow A.J., Stamler J.S. and Glazebrook J. (1999) Ancient origins of nitric oxide signalling in biological systems. Proc. Natl. Acad. Sci. USA, 96, 14206-14207.
  • Foissner I., Wendehenne D., Laangebartels C. and Durner J. (2000) Technical advance: in vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J., 23, 817-824.
  • Fewson C.A. and Nicholas D.J.D. (1960) Utilization of nitric oxide by microorganisms and higher plants. Nature, 188, 794-796.
  • Fliegert R., Gasser A. and Guse A.H. (2007) Regulation of calcium signalling by adeninebased second messengers. Biochem. Soc. Trans., 35, 109-114.
  • Flores T., Todd C.D., Tovar-Mendez A., Dhanoa P.K., Corra-Aragunde N., Hoyos M.E., Brownfield D.M., Mullen R.T., Lamattina L. and Polacco J.C. (2008) Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signalling in root development. Plant Physiol., 147, 1936-1946.
  • Gabaldon C., Gomez Ros L.V., Pedreno M.A. and Ros Barcelo A. (2005) Nitric oxide production by the differentiating xylem of of Zinnia elegans. New Phytol., 165, 121-130.
  • Garcia-Mata C. and Lamattina L. (2003) Abscisic acid, nitric oxide and stomatal closure -is nitrate reductase one of the missing linksTrends Plant Sci., 8, 20-26.
  • Gould K., Lamotte O., Klinguer A., Pugin A. and Wendehenne D. (2003) Nitric oxide production by tobacco leaves: a general stress responsePlant Cell Environ., 26, 1851-1862.
  • Grun S., Lindermayr S. and Durner J. (2006) Nitric oxide and gene regulation in plants. J. Exp. Bot.. 57, 507-516.
  • Guo F.Q., Okamoto M. and Crawford N.M. (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science, 302, 100-103.
  • Guo F.Q. and Crawford N.M. (2005) Arabidopsis nitric oxide synthase 1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell., 17, 3436-3450.
  • Hausladen A. and Stamler J.S. (1999) Nitrosative stress//Methods Enzymology. 300, 389-395.
  • He Y., Tang R.H., Hao Y., Stevens R.D., Cook C.W., Ahn S.M., Jing L., Yang Z., Chen L., Guo F., Fiorani F., Jackson R.B., Crawford N.M. and Pei Z.-M. (2004) Nitric oxide represses the Arabidopsis floral transition. Science, 305, 1968-1971.
  • Hong J.K., Yun B-W., Kang J-G., Raja M.U., Know E., Sorhagen K., Chu C., Wang Y. and Loake G.J. (2008) Nitric oxide function and signaling in plant disease resistance. J. Exp. Bot., 59, 147-154.
  • Huang J., Sommers E.M., Kim-Shapiro D.B., King S.B. (2002) Horseradish peroxidase catalyzed nitric oxide formation from hydroxyurea. J. Am. Chem. Soc., 124, 3473-3480.
  • Huang X., Rad U. and Durner J. (2002) Nitric oxide induces transcriptional activation of the nitricoxide tolerant alternative oxidase in Arabidopsis suspension cells. Planta, 215, 914923.
  • Hu X., Neill S.J., Tang Z. and Cai G.J. (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol., 137, 663-670.
  • Ignarro L.J., Byrns R.E., Buga G.M. and Wood K.S. (1987) Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circulation Res., 61, 866-879.
  • Yamasaki H. and Sakihama Y. (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett., 468, 89-92.
  • Yamasaki H. and Cohen M.F. (2006) NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants-Trends Plant Sci., 11, 522524.
  • Klatt P. and Lamas S. (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur. J. Biochem., 267, 4928-4944.
  • Koshland D.E. (1992) The molecule of the year. Science, 258, 1861.
  • Klepper L.A. (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emission from herbicide-treated soybean plants. Atmospheric Environ., 13, 537.
  • Klepper L.A. (1991) NOx evolution by soybean leaves treated with salicylic acid and selected derivatives. Pesticide Biochem. Physiol., 39, 43-48.
  • Lamattina L., Garcia-Mata C., Graziano M. and Pagnussat G. (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu. Rev. Plant Biol., 54, 109-136.
  • Lamotte O., Gould K., Lecourieux D., SequeiraLegrand A., Lebrun-Garcia A., Durner J., Pugin A. and Wendehenne D. (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol., 135, 516-529.
  • Lamotte O., Courtois C., Dobrowolska G., Besson A., Pugin A. and Wendehenne D. (2006) Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2-concentration in Nicotiana plumbaginifolia cells. Free Radic. Biol. Med., 40, 1369-1376.
  • Lindermayr C., Saalbach G. and Durner J. (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol., 137, 921-930.
  • Lea U.S., ten Hoopen F., Provan F., Kaizer W.M., Meyer C. and Lillo C. (2004) Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue. Planta. 219, 59-61.
  • Marletta M.A. (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell, 78, 927-930.
  • McDonald L.J. and Murad F. (1995) Nitric oxide and cyclic GMP signaling. Adv. Pharmacol. Chmother., 34, 263-276.
  • Meyer C., Lea U.S., Provan F., Kaiser W.M. and Lillo C. (2005) Is nitrate reductase a major player in the plant NO (nitric oxide) game Photosynth. Res., 83, 181-189.
  • Modolo L.V., Augusto O., Almeida I.M.G., PintoMaglio C.A.F., Oliveira H.C., Pinto-Maglio C.A.F., Seligman K. and Salgado I. (2006) Decreased arginine and nitric oxide levels in nitrate reductase deficient A. thaliana plants impair nitric oxide synthesis and the hypersensitive response to Pseudomonas syringae. Plant Sci., 171, 34-40.
  • Molina-Favero C., Creus C.M., Lanteri M.L., CorreaAragunde N., Lombardo M.C., Barassi C.A. and Lamattina L. (2007) Nitric oxide and plant growth promoting rhizobacteria: common features influencing root growth and development. Adv. Bot. Res., 46, 1-33.
  • Moreau M., Lee G.I., Wang Y., Crane B.R. and Klessig D.F. (2008) AtNOS/AtNOA1 is a functional Arabidopsis thaliana c-TPase and not a nitric-oxide synthase. J. Biol. Chem., 283, 32957-32967.
  • Mur L.A.J., Carver T.L.W., Prats E. (2006) No way to live: the varios roles of nitric oxide in plantpatthogen interactions//J. Exp. Bot. 75, 2006. 489-505.
  • Nakagami H., Pitzschke A. and Hirt H. (2005) Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci., 10, 339-346.
  • Neill S.J., Desican D., Clarke A., Hancock J.T. (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol., 128, 13-16.
  • Neill S.J., Desikan R. and Hancock J.T. (2003) Nitric oxide signaling in plants. New Phytol., 159, 1135.
  • Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P., Ribeiro D. and Wilson I. (2008) Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot., 59, 165-176.
  • Palmer R.M., Ferrige A.G. and Monsada S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327, 524-526.
  • Parani M.P., Myers R., Weirich H., Smith B., Leaman D.W. and Goldman S.L. (2004) Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechn. J., 2, 359-366.
  • Pagnussat G.C., Lanteri M.L. and Lamattina L. (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol., 132, 1241-1248.
  • Perazzolli M., Dominici P., Romero-Puertas M.C., Zago E., Zeier J., Sonoda M., Lamb C. and Delledonne M. (2004) Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell, 16, 27852794.
  • Pii Y., Crimi M., Cremonese G., Spena A. and Pandolfini T. (2007) Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol., 7: 21.
  • Polverari A., Molesini B., Pezzotti M., Buonaurio R., Marte M. and Delledonne M. (2003) Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol. Plant-Microbe Interact., 16, 1094-1105.
  • Rao M.V., Paliyath G., Ormrod D.P., Murr D.P. and Reid D.M. (1997) Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2metabolizing enzymes (Salicylic acid-mediated oxidative damage requires H2O2). Plant Physiol., 115, 137-149.
  • Reiter C.D., Teng R.J. and Beckman J.S. (2000) Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxinitrite. J. Biol. Chem., 275, 32460-32466.
  • Ribeiro E.A., Cunha F.Q., Tamashiro W.M. and Martins I.S. (1999) Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett., 445, 283-286.
  • Rockel P., Strube F., Rockel A., Wild J. and Kaizer W.M. (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot., 53, 103-110.
  • Schopfer F.J., Baker P.R. and Freeman B.A. (2003) NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response-Trends Biochem. Sci., 28, 646-654.
  • Schmidt H.H.H.W. and Walter U. (1994) NO at work. Cell. 78, 919-925.
  • Scibe U., Smith K.A. and Fowler D. (1993) Nitrification and denitrification as sources of nitric oxide and nitrous oxide in a sandy loam soil. Soil Biol. Biochem., 25, 1527-1536.
  • Shi F.M. and Li Y.Z. (2008) Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase. BMB Rep., 41, 79-85.
  • Shimoda U., Nagata M., Suzuki A., Abe M., Sato S., Kato T., Tabata S., Higashi S. and Uchiumi T. (2005) Symbiotic Rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol., 46, 99-107
  • Stohr C., Strube F., Marx G., Ullrich W.R. and Rockel P. (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta, 212, 835-841.
  • Stohr C. and Ullrich W.R. (2002) Generation and possible roles of NO in plant roots and apoplastic space. J. Exp. Bot., 53, 2293-2303.
  • Stohr C. and Stremlau S. (2006) Formation and possible roles of nitric oxide in plant roots. J. Exp. Bot., 57, 463-470.
  • Tun N.M., Holk A. and Scherer G.F. (2001) Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Lett., 509, 174176.
  • Tun N.N., Santa-Catarina C., Begum T., Silveira V., Handro W., Floh E.I.S. and Scherer G.F.F. (2006) Poliamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol., 47, 346-354.
  • Tun N.N., Livaja M., Kieber J.J. and Scherer G.F.E. (2008) Zeatin-induced nitric oxide (NO) biosynthesis in Arabidopsis thaliana mutants of NO biosynthesis and of two-component signaling genes. New Phytol., 178, 515-531.
  • Vandelle E., Poinssot B., Wendehenne D., Bentejac M. and Pugin A. (2006) Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogenactivated protein kinases in BcPG1-elicited grapevine defenses. Mol. Plant-Microbe Interact., 19, 429-440.
  • Valderrama R., Corpas F.J., Carreras A., FernandezOcana A., Chaki M., Luque L., GomezRodriguez M.V., Colmenero-Varea P., del Rio L.A. and Barroso J.B. (2007) Nitrosative stress in plants. FEBS Lett., 581, 453-461.
  • Van der Vliet A., Eiserich J.P., Kaur H., Cross C.E. and Halliwell B. (1996) Nitrotyrosine as biomarker for reactive nitrogen species. In: Nitric oxide (ed. Packer L.)//Methods in Enzymology, 269, 175-184.
  • Vasquez-Vivar J., Santos A.M., Junqueira V.B. and Augusto O. (1996) Peroxynitrite-mediated formation of free radicals in human plasma: EPR detection of ascorbyl, albumin-thyl and uric acid-derived free radicals. Biochem. J., 314, 868-876.
  • Vieweg M.F., Hohnjec N. and Kuster H. (2005) Two genes encoding different truncated haemoglobins are regulated during root nodule and arbuscular micorriza symbioses of Medicago truncatula. Planta, 220, 757-766.
  • Wendehenne D., Pugin A., Klessig D.F. and Durner J. (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci., 6, 177-183.
  • Wendehenne D. and Klessig D.F. (2004) Nitric oxide: a new player in plant signaling and defense responses. Cur. Opin Plant Biol., 7, 449-455.
  • Wildt J., Kley D., Rockel A., Rockel P. and Segschneider H.J. (1997) Emission of NO from several higher plant species. J. Geophys. Res., 102, 5919-5927.
  • Wink D.A., Hanbauer I., Krishna M.C., De-raff W., Gamson J. and Mitchell J.B. (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc. Natl. Acad. Sci. USA, 90, 9813-9817.
  • Wojtaszek P. (2000) Nitric oxide in plants. To NO or not to NO. Phytochemistry, 54, 1-4.
  • Zaninotto F., La Camera S., Polverari A. and Delledonne M. (2006) Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol., 141, 379-383.
  • Zeidler D., Zahringer U., Gerber I., Dubery I., Hartung T., Bors W., Hutzler P. and Durner J. (2004) Innate immunity in A. thaliana: lipopolysacharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. USA, 101, 15811-15816.
  • Zemojtel T., Frohlich A., Palmieri M.C., Kolanczyk M., Mikula I., Wyrwicz L.S., Wanker E.E., Mundlos S., Vingron M., Martasek P. and Durner J. (2006) Plant nitric oxide synthase: a never-ending story-Trends Plant Sci., 11, 524
  • Zhao J., Fujita K. and Sakai K. (2007) Reactive oxygen species, nitric oxide, and their interactions play different roles in Cupressus lusitanica cell death and phytoalexin biosynthesis. New Phytol., 175, 215-229.
  • Zhao M.G., Tian Q.Y. and Zhang W.H. (2007a) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol., 144, 206-217.
  • Zonia L.E., Stebbins N.E. and Polacco J.C. (1995) Essential role of urease in germination of nitrogen-limited Arabidopsis thaliana seeds. Plant Physiol., 107, 1097-1103
  • Zottini M., Formentin E., Scattolin M., Carimi F., Lo Schiavo F., Terzi M. (2002) Nitric oxide affects plant mitochondrial functionality in vivo. FEBS Lett., 515, 75-78.
  • Zumft W.G. (1997) Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev., 61, 533-616.
Еще
Статья научная