Физиологические и биохимические механизмы, обеспечивающие повышенную конститутивную холодоустойчивость в растениях картофеля, экспрессирующие ген SUC2 дрожжей, кодирующий апопластическую инвертазу
Автор: Дерябин А.Н., Трунова Т.И.
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 2 т.12, 2016 года.
Бесплатный доступ
Экспрессия гетерологичных генов в растениях является эффективным методом улучшения нашего понимания механизмов устойчивости растений. Целью этой работы было исследование участия инвертазы клеточной стенки и апопластических сахаров в конститутивную холодостойкость растений картофеля (Solanum tuberosum L., cv. Désirée), которые экспрессировали ген SUC2 дрожжей, кодирующий апопластическую инвертазу. В качестве контроля служили WT-растения картофеля. Увеличение существенной активности инвертазы клеточной стенки в листьях трансформированных растений свидетельствует о значительных изменениях в метаболизме клеточного углевода и регулятивной функции этого фермента. Активность дрожжевой инвертазы изменила состав внутриклеточных сахаров в листьях растения трансформированного картофеля. Общее содержание сахаров (сахароза, глюкоза, фруктоза) в листьях и апопласте было выше у трансформантов по сравнению с WT-растениями. Наши данные свидетельствуют о более высокой конститутивной устойчивости трансформантов к тяжелым условиям гипотермии по сравнению с WT-растениями. Этот факт позволяет нам рассматривать инвертазу клеточной стенки как фермент углеводного обмена, играющий важную регуляторную роль в метаболической сигнализации при формировании повышенной устойчивости растений к низкой температуре. Таким образом, линия картофеля с интегрированным геном SUC2 является удобным инструментом для изучения роли апопластической инвертазы и продуктов ее активности в процессе роста, развития и формирования конститутивной резистентности к гипотермии.
Короткий адрес: https://sciup.org/14323990
IDR: 14323990
Список литературы Физиологические и биохимические механизмы, обеспечивающие повышенную конститутивную холодоустойчивость в растениях картофеля, экспрессирующие ген SUC2 дрожжей, кодирующий апопластическую инвертазу
- Abdel-Latif A. (2008) Activity of sucrose synthase and acid invertase in wheat seedlings during a cold-shock using micro plate reader assays. Austr. J. Basic Appl.Sc., 2, 53-56
- Andjelković U., Pićurić S., Vujčić Z. (2010) Purification and characterisation of Saccharomyces cerevisiae external invertase isoforms. Food Chemistry, 120, 799-804
- Astakhova N., Deryabin A., Sinkevich M., Klimov S., Trunova T. (2008) Alteration of source-sink relations in the leaves of in vitro plants of two Solanum tuberosum L. genotypes under hypothermia. Horticulture and Vegetable Growing, 27, 139-149
- Aver’yanov A.A., Lapikova V.P. (1989) Relations of sugars and hydroxyl radicals and antifungal toxicity of leaf excretions. Biokhimiya, 54, 1646-1651
- Bertin P., Bouharmont J., Kinet J.M. (1996) Somaclonal variation and improvement in chilling tolerance in rice. Changes in chilling-induced electrolyte leakage. Plant Breeding, 115, 268-272
- Bolouri-Moghaddam M.R., Le Roy K., Xiang L., Rolland F., Van den Ende W. (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J., 277, 2022-2037
- Castonguay Y., Nadeau P. (1998) Enzymatic control of soluble carbohydrate accumulation in cold-acclimated crowns of alfalfa. Crop Science., 38, 1183-1189
- Caffery M., Tonseca V., Leopold A.C. (1988) Lipid-sugar interactions reveaauce to anhydrous biology. Plant Physiol., 86, 754-758
- Chen H.H., Li P.H. (1980) Characteristics of cold acclimation and deacclimation in tuber-bearing Solanum species. Plant Physiol., 65, 1146-1148
- Deryabin A.N., Trunova T.I., Dubinina I.M., Burakhanova E.A., Sabel’nikova E.P., Krylova E.M., Romanov G.A. (2003) Chilling tolerance of potato plants transformed with a yeast-derived invertase gene under the control of the B33 patatin promoter. Russ. J. Plant Physiol., 50, 449-454
- Deryabin A.N., Dubinina I.M., Burakhanova E.A., Astakhova N.V., Sabel’nikova E.P., Trunova T.I. (2005) Influence of expressing yeast-derived invertase gene in potato plants on membrane lipid peroxidation at low temperature. J. Therm. Biol., 30, 73-77
- Deryabin A.N., Sin’kevich M.S., Bukhov N.G., Trunova T.I. (2006) Alternative pathways of photosystem-I-dependent electron transport in two genetically different potato cultivars in vitro. Russ. J. Plant Physiol., 53, 431-438
- Deryabin A.N., Sin’kevich M.S., Dubinina I.M., Burakhanova E.A., Trunova T.I. (2007) Effect of sugars on the development of oxidative stress induced by hypothermia in potato plants expressing yeast invertase gene. Russ. J. Plant Physiol., 54, 32-38
- Deryabin A.N., Berdichevets I.N., Burakhanova E.A., Trunova T.I. (2014) Characteristics of extracellular invertase of Saccharomyces cerevisiae in heterologous expression of the suc2 gene in Solanum tuberosum plants. Biology Bulletin, 41, 24-30
- Deryabin A.N., Trunova T.I. (2014) Morphological and biochemical characteristics of potato plants expressing the invertase gene SUC2 from Saccharomyces cerevisiae, under cultivation in vitro. Tomsk State University Journal of Biology, 4(28), 150-168
- Deryabin A.N., Berdichevets I.N., Burakhanova E.A., Trunova T.I. (2016) The involvement of apoplastic invertase in the formation of resistance of cold-tolerant plants to hypothermia. Biology Bulletin, 43, 26-33
- Drozdov S.N., Sycheva Z.F., Budykina N.P., Balagurova N.I., Kholoptseva N.P. (1976) Effect of previous temperature on the frost resistance of plants. Fiziol. Rast., 23, 385-390.
- Fotopoulos V. (2005) Plant invertases: structure, function and regulation of a diverse enzyme family. J. Biol. Res., 4, 127-137
- Gupta A.K., Kaur N. (2005) Sugar signaling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J. BioSci., 30, 761-776
- Hummel M., Rahmani F., Smeekens S., Hanson J. (2009) Sucrose-mediated translational control. Ann. Bot., 104, 1-7
- Janskά A., Marsik P., Zelenkova S., Ovesna J. (2010) Cold stress and acclimation - what is important for metabolic adjustment? Plant Biology, 12, 395-405
- Jewell M.C., Campbell B.C., Godwin I.D. (2010) Transgenic plants for abiotic stress resistance. Kole C. et al. (eds.). In: Transgenic Crop Plants. Springer-Verlag Berlin Heidelberg, pp. 67-132
- Kacperska A. (1985) Biochemical and physiological aspects of frost hardening in herbaceous plants. In: Plant production in the North. Troms etc.,: Norwegian Univ. press, pp. 99-115
- Kartofel' Rossii: v 3-h t. (2005) Pod red. A.V. Kartashova. T.1. Selekcija, semenovodstvo, sertifikacija. M. 576 s.
- Keniya M.V., Lukash A.I., Gus’kov E.P. (1993) Role of low-molecular antioxidants under oxidative stress. Usp. Sovrem. Biol., 113, 456-470.
- Koch K.E. (1996) Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, 509-540
- Koch K.E. (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol., 7, 235-246
- Kolupaev Yu.V., Trunova T.I. (1992) Properties of metabolism and protective functions of plant carbohydrates under stress conditions. Fiziol. Biokh. Kul’t. Rast., 24, 523-533.
- Krasavina M.S., Burmistrova N.A., Raldugina G.N. (2014) The role of carbohydrates in plant resistance to abiotic stresses. Ahmad P., Rasool S. (eds.). In: Emerging Technologies and Management of Crop Stress Tolerance. Elsevier Inc., 1, pp. 229-270
- Kreslavski V.D., Zorina A.A., Los D.A., Fomina I.R., Allakhverdiev S.I. (2013) Molecular mechanisms of stress resistance of photosynthetic machinery. In: Molecular Stress Physiology of Plants. Rout G.R., Das A.B. (eds.) Springer India, pp. 21-51
- Kursanov A.L. (1984) Endogenous regulation of assimilate transport and source-sink relations in plants. Fiziol. Rast., 31, 579-594.
- Lalonde S., Boles E., Hellmann H., Barker L., Patrick J.W., Frommer W.B., Wood J.M. (1999) The dual action of sugar carriers: Transport and sugar sensing. Plant Cell, 11, 707-726
- Lehninger A.L. (1982) Principles of Biochemistry. Worth Publishers, Inc
- Levitt J. (1980) Responses of plants to environmental stresses. V.1. Chilling, freezing and high temperature stresses. N.Y.: Acad. Press
- Livingston D.P., Henson C.A. (1998) Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: Responses to second-phase cold hardening. Plant Physiol., 116, 403-408
- Maksimov N.A. (1952) Izbrannye raboty po zasuhoustojchivosti i zimostojkosti rastenij. T.2. Zimostojkost' rastenij. M.: Izd-vo AN SSSR. 295 s.
- Matros A., Peshev D., Peukert M., Mock H.P., Van den Ende W. (2015). Sugars as hydroxyl radical scavengers: proof of concept by studying the fate of sucralose in Arabidopsis. The Plant Journal, 82(5), 822-839
- Murayama S., Handa H. (2007) Genes for alkaline/neutral invertase in rice: alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta, 225, 1193-1203
- Nägele T., Kandel B.A., Frana S., Meissner M., Heyer A.G. (2011) A systems biology approach for the analysis of carbohydrate dynamics during acclimation to low temperature in Arabidopsis thaliana. FEBS J., 278, 506-518
- Nishizawa A., Yabuta Y., Shigeoka S. (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol., 147, 1251-1263
- Popov V.N., Antipina O.V., Burakhanova E.A. (2013) Involvement of cell-wall invertase in low-temperature hardening of tobacco plants. Rus. J. Plant Physiol., 60, 221-226
- Prasil I., Zamecnik J. (1998) The use of a conductivity measurement method for assessing freezing injury. Environ. and Exp. Bot., 40, 1-10
- Proels R.K., Hückelhoven R. (2014) Cell wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Molecular Plant Pathology, 15, 858-864
- Roberts D.W.A. (1982) Changes in the of invertase during the development of wheat leaves groving inder cold-hardening and nonhardening conditions. Canad. J. Bot., 60, 1-6
- Roitsch T., Balibrea M.E., Hofmann M., Proels R., Sinha A.K. (2003) Extracellular Invertase: key metabolic enzyme and PR protein. J. Exp. Bot., 54, 513-524
- Roitsch T., Gonzalez M-C. (2004) Function and regulation of plant invertase: sweet sensation. Trends Plant Sci., 9, 606-613
- Rolland F., Baena-Gonzalez E., Sheen J. (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol., 57, 675-709
- Rolland F., Sheen J. (2005) Sugar sensing and signaling networks in plants. Biochem. Soc. Trans., 33, 269-271
- Ruan Y.-L. (2012) Signaling role of sucrose metabolism in development. Molecular Plant., 53, 763-765
- Sauer N. (2007) Molecular physiology of higher plant sucrose transporters. FEBS Letters, 581, 2309-2317
- Sinkevich M.S., Sabelnikova E.P., Deryabin A.N., Astakhova N.V., Dubinina I.M., Burakhanova E.A., Trunova T.I. (2008) The changes in invertase activity and the content of sugars in the course of adaptation of potato plants to hypothermia. Russ. J. Plant Physiol., 55, 449-454
- Sherson S.M., Alford H.L., Forbes S.M., Wallac G., Smith S.M. (2003) Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J. Exp. Bot., 54, 525-531
- Smeekens S., Ma J., Hanson J., Rolland F. (2010) Sugar signals and molecular networks controlling plant growth. Current Opinion in Plant Biology, 3, 273-278
- Sonnewald U., Hajlrezaei M.-R., Kossmann J., Heyer A., Thethewey R.N., Willmitzer L. (1997) Increased potato tuber size resulting from apoplastic expression of a yeast invertase. Nature Biotechnol., 15, 794-797
- Sonoike K. (1996) Photoinhibition of photosystem I -its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol., 37, 239-247
- Strauss G., Hauser H. (1986) Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc. Natl. Acad. Sci. USA, 83, 2422-2426
- Sum A.K., Faller R., de Pablo J.J. (2003) Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. Biophysical J., 85, 2830-2844
- Tarkowski Ł.P., Van den Ende W. (2015) Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Frontiers in Plant Science, 6, 203-220
- Tjus S.E., Scheller H.V., Andersson B., Maller B.L. (2001) Active oxygen produced during selective excitation of photosystem I is damaging not only to photosystem I, but also to photosystem II. Plant Physiology, 125, 2007-2015
- Trunova T.I. (2007) Rastenie i nizkotemperaturnyi stress (64-e Timiryazevskie chteniya) (Plants and Cold Stress (64th Timiryazev Memorial Lectures)), Moscow: Nauka.
- Trunova T.I., Deryabin A.N., Sabel'nikova E.P., Alieva G.P., Aksenova N.P., Konstantinova T.N., Romanov G.A. (2001) Holodostojkost' rastenij kartofelja transformirovannogo genom drozhzhevoj invertazy. Vestnik Bashkirskogo universiteta, 4, 43-44.
- Trunova T.I., Astakhova N.V., Deryabin A.N., Sabelnikova E.P. (2003) Ultrastructural organization of chloroplasts of the leaves of potato plants transformed with the yeast invertase gene at normal and low temperature. Dokl. Biol. Sc., 389, 176-179
- Turhan E., Ergin S. (2012) Soluble sugars and sucrose-metabolizing enzymes related to cold acclimation of sweet cherry cultivars grafted on different rootstocks. Scientific World J., Article ID 979682
- Thakur P., Nayyar H. (2013) Facing the cold stress by plants in the changing environment: sensing, signaling, and defending mechanisms. Tuteja N., Singh Gill S. (eds.). In: Plant Acclimation to Environmental Stress. Springer Science+Business Media New York, pp. 29-69
- von Schaewen A., Stitt M., Schmidt R., Sonnewald U., Willmitzer L. (1990) Expression of a yeast-derived invertase in the cell wall of tobacco and arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J., 9, 3033-3044
- Yuanyuan M., Zhang Y., Lu J., Shao H. (2009) Roles of plant soluble sugars and their responses to plant cold stress. African J. Biotechnology, 8, 2004-2010