Физиологические и генетические механизмы ответа чайного растения Camellia sinensis (L.) Kuntze на засуху

Автор: Самарина Л.С., Рындин А.В., Малюкова Л.С., Гвасалия М.В., Маляровская В.И.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 3 т.54, 2019 года.

Бесплатный доступ

Основной лимитирующий фактор выращивания чайного растения - засуха. Она снижает продуктивность плантаций на 15-45 % (R.M. Bhagat с соавт., 2010; R.D. Baruah с соавт., 2012) и может приводить к гибели растений (E.K. Cheruiyot с соавт., 2009). Этим обусловлен интерес исследователей к физиолого-биохимическим (M. Mukhopadhyay с соавт., 2014; T.K. Maritim с соавт., 2015) и молекулярным (W.D. Wang с соавт., 2016; Y. Guo с соавт., 2017) механизмам устойчивости растений чая к засухе. Целью настоящего обзора стало обобщение международного опыта фенотипирования и генотипирования чайного растения по признаку устойчивости к стресс-фактору для составления целостной картины реакции растения на осмотический стресс и понимания воспроизводимости механизмов ответа в разных климатических зонах. Основную сигнальную роль в этих процессах играют абсцизовая, жасмоновая и салициловая кислоты, а также этилен (S.C. Liu с соавт., 2016), метаболический путь которых включает каскады физиологических реакций и генов ответа (T...

Еще

Чай, засуха, фитогормоны, осмолиты, антиоксидантная система, транскрипционные факторы

Короткий адрес: https://sciup.org/142220119

IDR: 142220119   |   DOI: 10.15389/agrobiology.2019.3.458rus

Список литературы Физиологические и генетические механизмы ответа чайного растения Camellia sinensis (L.) Kuntze на засуху

  • Bhagat R.M., Baruah R.D., Safigue S. Climate and tea production with special reference to north eastern India: a review. Journal of Environmental Research and Development, 2010, 4(4): 1017-1028.
  • Baruah R.D., Bhagat R.M. Climate trends of Northeastern India: a longterm pragmatic analysis for tea production. Two and a Bud, 2012, 59(2): 46-49.
  • Малюкова Л.С. Оценка влияния метеорологических условий на биопродуктивность почв чайных плантаций в условиях Черноморского побережья России. Плодоводство и ягодоводство России, 2014, 38(1): 255-261.
  • Cheruiyot E.K., Mumera L.M., Ng’etich W.K., Hassanali A., Wachira F.N. High fertilizer rates increase susceptibility of tea to water stress. Journal of Plant Nutrition, 2009, 33(1): 115-129 ( ) DOI: 10.1080/01904160903392659
  • Reynolds M.P., Ortiz R. Adapting crops to climate change: a summary. In: Climate change and crop production/M.P. Reynolds (ed.). CAB International, 2010: 1-8 ( ) DOI: 10.1079/9781845936334.0001
  • Sinclair T.R. Challenges in breeding for yield increase for drought. Trends in Plant Science, 2011, 16(6): 289-293 ( )
  • DOI: 10.1016/j.tplants.2011.02.008
  • Ashraf M. Inducing drought tolerance in plants: recent advances. Biotechnology Advances, 2010, 28(1): 169-183 ( )
  • DOI: 10.1016/j.biotechadv.2009.11.005
  • Varshney R.K., Bansal K.C., Aggarwal P.K., Datta S.K., Craufurd P.Q. Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends in Plant Science, 2011, 16(7): 363-371 ( )
  • DOI: 10.1016/j.tplants.2011.03.004
  • Tsonev S., Todorovska E., Avramova V., Kolev S., Abu-Mhadi N., Christov N.K. Genomics assisted improvement of drought tolerance in maize: QTL approaches. Biotechnology & Biotechnological Equipment, 2009, 23(4): 1410-1413 ( )
  • DOI: 10.2478/V10133-009-0004-8
  • Mukhopadhyay M., Mondal T.K. The physio-chemical responses of Camellia plants to abiotic stresses. J. Plant Sci. Res., 2014, 1(1): 1-12.
  • Bernier J., Atlin G.N., Serraj R., Kumar A., Spaner D. Breeding upland rice for drought resistance. Journal of the Science of Food and Agriculture, 2008, 88(6): 927-939 ( )
  • DOI: 10.1002/jsfa.3153
  • Fleury D., Jefferies S., Kuchel H., Langridge P. Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany, 2010, 61(12): 3211-3222 ( )
  • DOI: 10.1093/jxb/erq152
  • Manavalan L.P., Guttikonda S.K., Tran L.S., Nguyen H.T. Physiological and molecular approaches to improve drought resistance in soybean. Plant and Cell Physiology, 2009, 50(7): 1260-1276 ( )
  • DOI: 10.1093/pcp/pcp082
  • Yadav R.S., Sehgal D., Vadez V. Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. Journal of Experimental Botany, 2011, 62(2): 397-408 ( )
  • DOI: 10.1093/jxb/erq265
  • Araus J.L., Slafer G.A., Reynolds M.P., Royo C. Plant breeding and water relations in C3 cereals: what should we breed for? Annals of Botany, 2002, 89(7): 925-940 ( )
  • DOI: 10.1093/aob/mcf049
  • Пчихачев Э.К., Корзун Б.В. Особенности фенологического развития чайных растений в условиях Адыгеи. Субтропические культуры, 2010, 1(4): 219-220.
  • Туов М.Т. Научные основы повышения качества и продуктивности чайных плантаций России. Докт. дис. Сочи, 1997.
  • Das A., Das S., Mondal T.K. Identification of differentially expressed gene profiles in young roots of tea (Camellia sinensis (L.) O. Kuntze) subjected to drought stress using suppression subtractive hybridization. Plant Mol. Biol. Rep., 2012, 30(5): 1088-1101 ( )
  • DOI: 10.1007/s11105-012-0422-x
  • Maritim T.K., Kamunya S.M., Mireji P., Mwendia C.M., Muoki R.C., Cheruiyot E.K., Wachira F.N. Physiological and biochemical response of tea (Camellia sinensis (L.) O. Kuntze) to water-deficit stress. The Journal of Horticultural Science and Biotechnology, 2015, 90(4): 395-400 ( )
  • DOI: 10.1080/14620316.2015.11513200
  • Jaleel C.A., Manivannan P., Wahid A., Farooq M., Somasundaram R., Panneerselvam R. Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol., 2009, 11(1): 100-105.
  • Waheed A., Hamid F.S., Shan A.H., Ahmad H., Khalid A., Abbasi F.M., Ahmad N., Aslam S., Sarwar S. Response of different tea (Camellia sinensis L.) clones against drought stress. J. Mater. Environ. Sci., 2012, 3(2): 395-410.
  • Гвасалия М.В. Спонтанные и индуцированные сорта и формы чая (Сamellia sinensis (L.) Kuntze) во влажных субтропиках России и Абхазии, перспективы их размножения и сохранения в культуре in vitro. Канд. дис. Краснодар, 2015.
  • Nyabundi K.W., Owuor P.O., Netondo G.W., Bore J.K. Genotype and environment interactions of yields and yield components of tea (Camellia sinensis) cultivars in Kenya. American Journal of Plant Sciences, 2016, 7(6): 855-869 ( )
  • DOI: 10.4236/ajps.2016.76081
  • Вавилова Л.В., Корзун Б.В. Физиологические аспекты устойчивости чайных растений и формирование урожая чайного листа в условиях Северо-западного Кавказа. Новые технологии, 2016, 4: 114-120.
  • Liu S.C., Yao M.Z., Ma C.L., Jin J.Q., Ma J.Q., Li C.F. Physiological changes and differential gene expression of tea plant under dehydration and rehydration conditions. Scientia Horticulturae, 2015, 184(5): 129-141 ( )
  • DOI: 10.1016/j.scienta.2014.12.036
  • Liu S.C., Jin J.Q., Ma J.Q., Yao M.Z., Ma C.L., Li C.F., Ding Z.T., Chen L. Transcriptomic analysis of tea plant responding to drought stress and recovery. PLoS ONE, 2016, 11(1): e0147306 ( )
  • DOI: 10.1371/journal.pone.0147306
  • Li X., Liu F. Drought stress memory and drought stress tolerance in plants: biochemical and molecular basis. In: Drought stress tolerance in plants/M. Hossain, S. Wani, S. Bhattacharjee, D. Burritt, L.S. Tran (eds.). Springer, Cham, 2016, Vol. 1: 17-44 ( )
  • DOI: 10.1007/978-3-319-28899-4
  • Daszkowska-Golec A.D., Szarejko I. Open or close the gate-stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci., 2013, 4: 138 ( )
  • DOI: 10.3389/fpls.2013.00138
  • Umezawa T., Nakashima K., Miyakawa T., Kuromori T., Tanokura M., Shinozaki K., Yamaguchi-Shinozaki K. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol., 2010, 51(11): 1821-1839 ( )
  • DOI: 10.1093/pcp/pcq156
  • Miller G., Schlauch K., Tam R., Cortes D., Torres M.A., Shulaev V., Jeffery L. Dang, Mittler R. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling, 2009, 2(84): 1-10 ( )
  • DOI: 10.1126/scisignal.2000448
  • Upadhyaya H., Dutta B.K., Sahoo L., Panda S.K. Comparative effect of Ca, K, Mn and B on post-drought stress recovery in tea American Journal of Plant Sciences, 2012, 3(4): 443-460 ( )
  • DOI: 10.4236/ajps.2012.34054
  • Meyer S., Mumm P., Imes D., Endler A., Weder B., Al-Rasheid K.A.S., Geiger D., Marten I., Martinoia E., Hedrich R. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. The Plant Journal, 2010, 63(6): 1054-1062 ( )
  • DOI: 10.1111/j.1365-313X.2010.04302.x
  • Upadhyaya H., Panda S.K., Dutta B.K. CaCl2 improves post-drought recovery potential in Camellia sinensis (L) O. Kuntze. Plant Cell Rep., 2011, 30(4): 495-503 ( )
  • DOI: 10.1007/s00299-010-0958-x
  • Gao X.Y., Yang G.P., Xu Z.Q. Xu F.C. Effect of calcium on antioxidant enzymes of lipid peroxidation of soy-bean leaves under water stress. J. South China Agric. Univ., 1999, 2: 58-62.
  • Bowler C., Fluhr B. The role of calcium and activated oxygen as signals for controlling cross-tolerance. Trends Plant Sci., 2000, 5(6): 241-243 ( )
  • DOI: 10.1016/S1360-1385(00)01628-9
  • Miura K., Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci., 2014, 5: 4 ( )
  • DOI: 10.3389/fpls.2014.00004
  • Defez R., Andreozzi A., Dickinson M., Charlton A., Tadini L., Pesaresi P., Bianco C. Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium strain. Front Microbiol., 2017, 14(8): 2466 ( )
  • DOI: 10.3389/fmicb.2017.02466
  • Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev., 2009, 29(1): 185-212 ( )
  • DOI: 10.1051/agro:2008021
  • Damayanthi M.M.N., Mohotti A.J., Nissanka S.P. Comparison of tolerant ability of nature field grown tea (Camellia sinensis L.) cultivars exposed to a drought stress in Passara Area. Tropical Agricultural Research, 2010, 22(1): 66-75 ( )
  • DOI: 10.4038/tar.v22i1.2671
  • Mukhopadhyay M., Ghosh P.D., Mondal T.K. Effect of boron deficiency on photosynthesis and antioxidant responses of young tea (Camellia sinensis (L.) O. Kuntze) plantlets. Russ. J. Plant Physiol., 2013, 60(5): 633-639 ( )
  • DOI: 10.1134/S1021443713030096
  • Притула З.В., Малюкова Л.С. Влияние биогенных элементов (Mg, Zn, B) на водный режим чая (Саmellia Sinensis (L.) Kuntze) в условиях продолжительной засухи и гипертермии. Проблемы агрохимии и экологии, 2017, 3: 31-34.
  • Tholakalabavi A., Zwiazek, J.J, Thorpe, T.A. Effect of mannitol and glucose-induced osmotic stress on growth, water relations, and solute composition of cell suspension cultures of poplar (Populus deltoids var. Occidentalis) in relation to anthocyanin accumulation. In Vitro Cell Dev. Biol. -Plant, 1994, 30(3): 164-170 ( )
  • DOI: 10.1007/BF02632208
  • Serraj R., Sinclair T.R. Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell Environ., 2002, 25(2): 333-341 ( )
  • DOI: 10.1046/j.1365-3040.2002.00754.x
  • Guo Y., Zhao S., Zhu C.H., Chang X., Yue C.H., Wang Z.H., Lin Y., Lai Z.H. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. BMC Plant Biol., 2017, 17(1): 211 ( )
  • DOI: 10.1186/s12870-017-1172-6
  • Szabados L., Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci., 2010, 15(2): 89-97 ( )
  • DOI: 10.1016/j.tplants.2009.11.009
  • Farooq M., Basra S.M.A., Wahid A., Cheema Z.A., Cheema M.A., Khaliq A. Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J. Agron. Crop Sci., 2008, 194(5): 325-333 ( )
  • DOI: 10.1111/j.1439-037X.2008.00323.x
  • Upadhyaya H., Panda S.K. Abiotic stress responses in tea : an overview. Reviews in Agricultural Science, 2013, 1: 1-10 ( )
  • DOI: 10.7831/ras.1.1
  • Ciereszko I. Sucrose metabolism in plant tissues under stress conditions: key enzymes, localization and function In: Compartmentation of responses to stresses in higher plants, true or false/W. Maksymiec (ed.). Transworld Research Network, Trivandrum, 2009: 193-218 (ISBN: 978-81-7895-422-6).
  • ElSayed A.I., Rafudeen M.S., Golldack D. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biology, 2014, 16(1): 1-8 ( )
  • DOI: 10.1111/plb.12053
  • Sami F., Yusuf M., Faizan M., Faraz A., Hayat S. Role of sugars under abiotic stress. Plant Physiology and Biochemistry, 2016, 109: 54-61 ( )
  • DOI: 10.1016/j.plaphy.2016.09.005
  • Thalmann M., Santelia D. Starch as a determinant of plant fitness under abiotic stress. New Phytologist, 2017, 214(3): 943-951 ( )
  • DOI: 10.1111/nph.14491
  • Kamanga R.M., Mbega E., Ndakidemi P. Drought tolerance mechanisms in plants: physiological responses associated with water deficit stress in Solanum lycopersicum Adv. Crop. Sci. Tech., 2018, 6(3): 362 ( )
  • DOI: 10.4172/2329-8863.1000362
  • Das A., Mukhopadhyay M., Sarkar B., Saha D., Mondal T.K. Influence of drought stress on cellular ultrastructure and antioxidant system in tea cultivars with different drought sensitivities. J. Environ. Biol., 2015, 36(4): 875-882.
  • Белоус О.Г. Активность каталазы в листьях чая в зоне влажных субтропиков России. LAP LAMBERT Academic Publishing, Saarbruchen, 2012.
  • Pedranzani H., Vigliocco A. Evaluation of jasmonic acid and salicylic acid levels in abiotic stress tolerance: Past and present. In: Mechanisms behind phytohormonal signalling and crop abiotic stress tolerance. Chapter 15/V.P. Singh, S. Singh, S.M. Prasad (eds.). Nova Science Publishers, 2017: 1-60.
  • Manivannan P., Jaleel C.A., Kishorekumar A., Sankar B., Somasundaram R., Sridharan R., Panneerselvam R. Drought stress induced changes in the biochemical parameters and photosynthetic pigments of cotton (Gossypium hirsutum L.). Indian J. Appl. Pure Biol., 2007, 22: 369-372.
  • Притула З.В., Малюкова Л.С., Великий А.В. Состояние пигментного комплекса листьев чая (Cаmellia sinensis (L.) O. Kuntze) на фоне прикорневого внесения кальция. Плодоводство и ягодоводство России, 2017, 51: 299-307.
  • Tyerman S.D., Niemietz C.M., Bramley H. Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant, Cell & Environment, 2002, 25(2): 173-194 ( )
  • DOI: 10.1046/j.0016-8025.2001.00791.x
  • Wahid A., Gelani S., Ashraf M., Foolad M.R. Heat tolerance in plants: an overview. Environmental and Experimental Botany, 2007, 61(3): 199-223 ( )
  • DOI: 10.1016/j.envexpbot.2007.05.011
  • Spalding E.P., Harper J.F. The ins and outs of cellular Ca2+ transport. Current Opinion in Plant Biology, 2011, 14(6): 715-720 ( )
  • DOI: 10.1016/j.pbi.2011.08.001
  • Saruhashi M., Ghosh T.K., Arai K., Ishizaki Y., Hagiwara K., Komatsu K., Shiwa Y., Izumikawa T., Yoshikawa H., Umezawa T., Sakata Y., Takezawa D. Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase 2. Proceedings of the National Academy of Sciences, 2015, 112(46): E6388-6396 ( )
  • DOI: 10.1073/pnas.1511238112
  • Wan X., O’Quinn R.P., Pierce H.L., Joglekar A.P., Gall W.E., DeLuca J.G., Carroll C.W., Liu S.-T., Yen T. J., McEwen B.F., Stukenberg T., Desai A., Salmon E.D. Protein architecture of the human kinetochore microtubule attachment site. Cell, 2009, 137(4): 672-684 ( )
  • DOI: 10.1016/j.cell.2009.03.035
  • Kim T.H., Böhmer M., Hu H.H., Nishimura N., Schroeder J.I. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 2010, 61: 561-591 ( )
  • DOI: 10.1146/annurev-arplant-042809-112226
  • Gupta S., Bharalee R., Bhorali P., Das S.K., Bhagawati P., Bandyopadhyay T., B. Gohain, Agarwal N., Ahmed P., Borchetia S., Kalita M.C., Handique A.K., Das S. Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling. Mol. Biotechnol., 2013, 53(3): 237-248 ( )
  • DOI: 10.1007/s12033-012-9517-8
  • Gelmesa D., Dechassa N., Mohammed D., Gebre E., Monneveux P., Bündig C., Winkelmann T. In vitro screening of potato genotypes for osmotic stress tolerance. Open Agriculture, 2017, 2(1): 308-316 ( )
  • DOI: 10.1515/opag-2017-0035
  • Wang W.D., Xin H.H., Wang M.L., Ma Q.P., Wang L., Kaleri N.A., Wang Y.H., Li X.H. Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Front Plant Sci., 2016, 7(795): 385-412 ( )
  • DOI: 10.3389/fpls.2016.00385
  • Cui X., Wang Y.-X., Liu Z.-W., Wang W.-L., Li H., Zhuang J. Transcriptome-wide identification and expression profile analysisof the bHLH family genes in Camellia sinensis. Functional & Integrative Genomics, 2018, 18(5): 489-503 ( )
  • DOI: 10.1007/s10142-018-0608-x
  • Wang Y.-X., Liu Z.-W., Wu Z.-J., Li H., Zhuang J. Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant PLoS ONE, 2016, 11(11): e0166727 ( )
  • DOI: 10.1371/journal.pone.0166727
  • Wang Y., Shu Z., Wang W., Jiang X., Li D., Pan J., Li X. CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses. Biologia Plantarum, 2016, 60(3): 443-451 ( )
  • DOI: 10.1007/s10535-016-0618-2
  • Wang M., Zhuang J., Zou Z., Li Q., Xin H., Li X. Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana. J. Plant Biol., 2017, 60: 452-461 ( )
  • DOI: 10.1007/s12374-016-0547-9
  • Shen W., Li H., Teng R., Wang Y., Wang W., Zhuang J. Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics, 2018 (In Press, Corrected Proof) ( )
  • DOI: 10.1016/j.ygeno.2018.07.009
  • Chen J., Gao T., Wan S., Zhang Y., Yang J., Yu Y., Wang W. Genome-wide identification, classification and expression analysis of the HSP gene superfamily in tea plant (Camellia sinensis). Int. J. Mol. Sci., 2018, 19(9): 2633 ( )
  • DOI: 10.3390/ijms19092633
  • Wang L., Cao H., Qian W., Yao L., Hao X., Li N., Yang Y., Wang X. Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic arabidopsis. Annals of Botany, 2017, 119(7): 1195-1209 ( )
  • DOI: 10.1093/aob/mcx011
  • Li H., Huang W., Liu Z.-W., Wang Y.-X., Zhuang J. Transcriptome-based analysis of Dof family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Int J Genomics, 2016: 5614142 ( )
  • DOI: 10.1155/2016/5614142
  • Wang P., Chen D., Zheng Y., Jin S., Yang J., Ye N. Identification and expression analyses of SBP-box genes reveal their involvement in abiotic stress and hormone response in tea plant (Camellia sinensis). Int. J. Mol. Sci., 2018, 19(11): 3404 ( )
  • DOI: 10.3390/ijms19113404
  • Zhu J., Wang X., Guo L., Xu Q., Zhao S., Li F., Yan X., Liu S., Wei C. Characterization and alternative splicing profiles of the lipoxygenase gene family in tea plant (Camellia sinensis). Plant and Cell Physiology, 2018, 59(9): 1765-1781 ( )
  • DOI: 10.1093/pcp/pcy091
  • Guo Y., Zhao S., Zhu C., Chang X., Yue C., Wang Z., Lin Y., Lai Z. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. BMC Plant Biology, 2017, 17: 211 ( )
  • DOI: 10.1186/s12870-017-1172-6
Еще
Статья обзорная