Flow past various types of vane mechanisms by a two-phase compressible flow
Автор: Kulagina Ludmila V., Shtym Konstantin A.
Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu
Рубрика: Математическое моделирование. Численный эксперимент
Статья в выпуске: 4 т.15, 2022 года.
Бесплатный доступ
The statement of boundary value problems for the flow around real wing-shaped profiles of supercavitation mechanisms near the separation boundary is stated. The problem under consideration is extremely important for the numerical study of the processes occurring in heating equipment, supercavitation devices, and heat and mass transfer technologies. The discussed algorithms have been implemented as computational programs for algebraic (ALFA) and integral (OMEGA) equations, ordinary (SIMP) and improper (SECOB) integrals, including the Cauchy integral (DSECOB) as well as summation programs for sequences and series (SHENKS, AYTKEN), including divergent ones (EULER).
Two-phase compressible flow, wing-shaped profiles of supercavitation mechanisms, supercavitation mechanisms, mass transfer technologies
Короткий адрес: https://sciup.org/146282465
IDR: 146282465 | DOI: 10.17516/1999-494X-0409
Список литературы Flow past various types of vane mechanisms by a two-phase compressible flow
- Kulagin V. A., Moskvichev V. V., Makhutov N. A, Markovich D. M. and Shokin Yu. I. 20i6. Physical and Mathematical Modeling in the Field of High-Velocity Hydrodynamics in the Experimental Base of the Krasnoyarsk Hydroelectric Plant J. Herald Rus Acad Sci, 86, pp. 454—465.
- Viter V. K. and Kulagin V. A. 2006. Large-Scale Gravitational Hydrodynamic Tunnels (Krasnoyarsk: Krasnoyarsk State Technical University Publishing House) p. 243.
- Demidenko N. D., Kulagin V. A., and Shokin Yu. I. 20i2. Modeling and Calculating the Technology of Distributed Systems (Novosibirsk: Nauka) p. 436.
- Kulagin V. A., Pyanykh T. A. 20i2. Investigation of cavitation flows by means of mathematical modeling J. Sib Fed Univ Eng Technol, 5 pp. 57—62.
- Demidenko N. D. and Kulagina L. V. 2006. Optimal Control of Thermalengineering Processes in Tube Furnaces, Chem Petrol Eng, 42, pp. i28—i30.
- Zhi-Ying Zheng, Qian Li, Lu Wang, Li-Ming Yao, Wei-Hua Cai, Vladimir A Kulagin, Hui Li and Feng-Chen Li. 20i9. Numerical study on the effect of steam extraction on hydrodynamic characteristics of rotational supercavitating evaporator for desalination Desalination, 455 pp. i—i8.
- Likhachev D. S., Li F.-C. and Kulagin V. A. 20i4. Experimental study on the performance of a rotational supercavitating evaporator for desalination J. Sci China Tech Sci, 57(ii): pp. 2ii5—2i30.
- Kulagina L.V., Kulagin V. A., Li F.-Ch. Solution of the problem of flow past a wing profile near the interface, J. Sib. Fed. Univ. Eng. technol., 20i7, i0(4), 523-533. DOI: i0.i75i6/i999-494X-20i7-i0-4-523-533.
- Yu-Ke Li, Zhi-Ying Zheng, Feng-Chen Li, Kulagina L.V. Numerical study on secondary flows of viscoelastic fluids in straight ducts: Origin analysis and parametric effects, Computers and Fluids. i52 (20i7) 57—73, doi: i0.i0i6/j.compfluid.20i7.04.0i6.
- Van Dyke M. i967. Perturbation Methods in Fluid Mechanics (Moscow: Mir) p. 3i0.
- Demidenko N. D., Kulagin V. A., Shokin Y. I. and Li F.-C. 20i5. Heat and mass transfer and supercavitation (Novosibirsk: Nauka) p. 436.
- Kulagin V. A., Vil'chenko A. P. and Kulagina T. A. 200i. Modeling of two-phase supercavitation flows, ed V I Bykov (Krasnoyarsk: Krasnoyarsk State Technical University Publishing House) p. i87.
- Ivchenko V. M. i985. Supercavitation mechanism hydrodynamics (Irkutsk: Irkutsk State Univ. Publishing House.) p. 232.
- Ivchenko V. M., Kulagin V. A. and Nemchin A. F. i990. The cavitational technology, ed acad. G V Logvinovich (Krasnoyarsk: Krasnoyarsk State University Publishing House) p. 200.
- Shanks D. 1955. Non-linear transformation of divergent and slowly convergent equences J. Math and Phys, 34, pp. 1-42.
- Ogirko O. V. 1982. Application and refinement of nonlinear cubature formulae Dep. with VINITI No 324-82 (Lviv: Institute of applied problems in mechanics and mathematics AS Ukraine) p. 18.
- Krylov V. I. et al 1977. Computational Methods (Moscow: Nauka) chapter II p. 399.
- Skorobogatko V. Ya. 1983 The theory of branched continuedfractions and its application to computational mathematics (Moscow: Nauka) p. 311.
- Hunter C. and Guerrieri B. 1980. Deducing the properties of singularities of function from their Taylor series coefficients, J of Applied Math, 39, pp. 248-263.
- Verlan A. F. and Sizikov V. S. 1978 Methods for solving integral equations with machine computational software (Kiev: Naukova dumka) p. 292.
- Frank de Hoog 1987. A new algorithm for solving Toeplitz systems of equations Linear Algebra and its Applications Vol. 88-89 pp. 123-138.