Fluid dynamic bearings: modelling of elastic deformations

Бесплатный доступ

This article deals with a new approach for calculation of self-consistent pressure distribution and surface deflection for a lubricated journal bearing. This approach is based on the numerical solution of the 2-D Reynolds’ equation for the lubrication layer, numerical calculation of the surface deformations by the 3-D ANSYS package and Fourier series expansion for the compliance matrix. A simple analytical approximation is found for the obtained compliance matrix, which can be used for heavy loaded journal bearings. The compliance matrix is implemented into the iterative procedure for calculation of self-consistent pressure distribution and surface deflection in the contact zone. Results of calculations are presented for the particular journal bearing.

Еще

Journal bearing, elastic hydrodynamics, compliance matrix

Короткий адрес: https://sciup.org/146114951

IDR: 146114951

Список литературы Fluid dynamic bearings: modelling of elastic deformations

  • Williams J.A. Engineering tribology. New York: Oxford University Press Inc. 242. 1994.
  • Hamrock B. J. Fundamentals of fl uid film lubrication. McGraw-Hill Inc. 1994.
  • Bair S. High-Pressure Theology for quantitative elastohydrodynamics. In Tribology and Interface Engineering Series; 54, Elsevier: The Netherlands. 2007.
  • Szeri A. Z. Fluid film lubrication (2-nd ed.). Cambridge University Press. 2011.
  • Lugt P. M., Morales-Espejel G. E. A Review of elasto-hydrodynamic lubrication Tteory. Tribology Transactions. 2011. Vol. 54. P. 470-496.
  • Galakhov M. A., Usov P. P. Differential and integral equations of the mathematical theory of friction. Nauka, Moscow. 1990.
  • Goryacheva I. G. Contact mechanism in tribology. Kluwer academic pub lishers. 1998.
  • Landau L. D., Lifshitz E, M. Theory of elasticity. Pergamon Press. 1970.
  • Arghir, M., Alsayed, A., and Nicolas D. The finite volume solution of the Reynolds equation of lubrication with film discontinuities. International Journal of Mechanical Sciences. 2002. Vol. 44.
  • Benasciutti D., Gallina M., Munteanu M. A numerical approach for the analysis of deformable journal bearings. Frattura ed Integrit Strutturale. 2012. Vol. 21. P. 37-45.
  • Salant R.F., Fortier A. E. Numerical Simulation of a slider Bearing with an engineered slip/no-slip surface. Tribology and lubrication engineering: 14 International Colloquium Tribology. 13-15 Jan. Esslingen, Germany. Technische Akademie Esslingen. 2004. P. 1699-1704.
  • Kumar M. S., Thyla P. R., Anbarasu E. Numerical analysis of hydrodynamic journal bearing under transient dynamic conditions. MECHANIKA. 2010. Vol. 2(82). P. 37-42.
  • Samarskii A.A. The theory of difference schemes. USA, Marcel Dekker, Inc. 2001.
  • Stolarski T., Nakasone Y., Yoshimoto S. Engineering analysis with ANSYS software. ELSEVIER. 2006.
  • Tikhonov, A. N., Arsenin V. Y. Solution of ill-posed problems. Washington, Winston & Sons. 1977.
  • Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Yagola A.G. Numerical methods for the solution of ill-posed problems. Kluwer Academic Publishers. 1995.
Еще
Статья научная