Forecasting of Indonesian Digital Economy based on Available New Start-up
Автор: Taufik Hidayat, Rahutomo Mahardiko, Ali Miftakhu Rosyad
Журнал: International Journal of Information Engineering and Electronic Business @ijieeb
Статья в выпуске: 2 vol.15, 2023 года.
Бесплатный доступ
Since the last 5 years, digital economy is growing steadily in Indonesia. Right now, the digital economy faces some potential problems and Covid-19 pandemic. This paper presents current data of the national Gross Domestic Product (GDP) and other GDPs (billion IDR) and the number of start-up, and predicts near some categories of future GDP and numbers of available new start-up for the next few years. The forecast will use Markov chain analysis. The results indicate that, while there are problems faced by the digital economy industry, the GDP and numbers of start-up are significantly increasing.
Digital economy, start-up, income forecast, markov chain method
Короткий адрес: https://sciup.org/15018863
IDR: 15018863 | DOI: 10.5815/ijieeb.2023.02.02
Список литературы Forecasting of Indonesian Digital Economy based on Available New Start-up
- H. S. Lee, J. W. Lee, H. Y. Kim, H. J. Jo, and B. G. Lee, “Promising ICT Transfer Fields for Promotion of Micro-Startups,” Procedia Comput. Sci., vol. 91, no. Itqm, pp. 779–788, 2016, doi: 10.1016/j.procs.2016.07.078.
- P. Adler, R. Florida, K. King, and C. Mellander, “The city and high-tech startups: The spatial organization of Schumpeterian entrepreneurship,” Cities, vol. 87, no. December 2018, pp. 121–130, Apr. 2019, doi: 10.1016/j.cities.2018.12.013.
- W. Sutherland and M. H. Jarrahi, “The gig economy and information infrastructure: The case of the digital nomad community,” Proc. ACM Human-Computer Interact., vol. 1, no. CSCW, pp. 1–24, 2017, doi: 10.1145/3134732.
- R. Sanchez-Vazquez, J. Silva, and R. L. T. Santos, “Exploiting socio-economic models for lodging recommendation in the sharing economy,” RecSys 2017 - Proc. 11th ACM Conf. Recomm. Syst., pp. 260–268, 2017, doi: 10.1145/3107411.3107471.
- Kominfo, “Study Ekonomi Digital di Indonesia Sebagai Pendorong Utama Pembentukan Industri Digital Masa Depan,” 2018.
- B. Pamungkas, S. Rohajawati, D. Fitrianah, I. Nurhaida, and H. H. Wachyu, “Proposing a Key Model e-Commerce Towards Digital Economy for Coastal Areas in Indonesia,” in Pediatric Research, vol. 450, no. 4, K. J. Kim, H. Kim, and N. Baek, Eds. Singapore: Springer Singapore, 2018, pp. 98–105. doi: 10.1007/978-981-10-6454-8_14.
- B. Priambodo et al., “Predicting GDP of Indonesia Using K-Nearest Neighbour Regression,” J. Phys. Conf. Ser., vol. 1339, no. 1, p. 012040, Dec. 2019, doi: 10.1088/1742-6596/1339/1/012040.
- S. Knight, “Delivering the digital region: leveraging digital connectivity to deliver regional digital growth,” Aust. Plan., vol. 52, no. 1, pp. 4–15, 2015, doi: 10.1080/07293682.2015.1019750.
- T. R. Dillahunt, X. Wang, E. Wheeler, H. F. Cheng, B. Hecht, and H. Zhu, “The sharing economy in computing: A systematic literature review,” Proc. ACM Human-Computer Interact., vol. 1, no. CSCW, pp. 1–26, 2017, doi: 10.1145/3134673.
- M. Nicola et al., “The socio-economic implications of the coronavirus pandemic (COVID-19): A review,” Int. J. Surg., vol. 78, pp. 185–193, Jun. 2020, doi: 10.1016/j.ijsu.2020.04.018.
- E. N. K. Waller, P. D. Adablah, and Q.-A. Kester, “Markov Chain: Forecasting Economic Variables,” in 2019 International Conference on Computing, Computational Modelling and Applications (ICCMA), Mar. 2019, pp. 115–1154. doi: 10.1109/ICCMA.2019.00026.
- J. Sarkis, M. J. Cohen, P. Dewick, and P. Schröder, “A brave new world: Lessons from the COVID-19 pandemic for transitioning to sustainable supply and production,” Resour. Conserv. Recycl., vol. 159, p. 104894, Aug. 2020, doi: 10.1016/j.resconrec.2020.104894.
- A. Ghezzi, “Digital startups and the adoption and implementation of Lean Startup Approaches: Effectuation, Bricolage and Opportunity Creation in practice,” Technol. Forecast. Soc. Change, vol. 146, no. December 2017, pp. 945–960, Sep. 2019, doi: 10.1016/j.techfore.2018.09.017.
- T. V. Anh, H. T. T. Nguyen, and N. T. M. Linh, “Digital Transformation,” in Proceedings of the 2019 The World Symposium on Software Engineering - WSSE 2019, 2019, no. 2017, pp. 119–124. doi: 10.1145/3362125.3362135.
- Bekraf, “Mapping dan database startup Indonesia 2018,” Badan Ekon. Kreat., pp. 1–202, 2018.
- Arlyana Abubakar, “Peran digital economy sebagai sumber pertumbuhan ekonomi baru dalam perspektif bank sentral,” 2018.
- M. Anshari, M. N. Almunawar, M. Masri, and M. Hamdan, “Digital Marketplace and FinTech to Support Agriculture Sustainability,” Energy Procedia, vol. 156, no. 2018, pp. 234–238, Jan. 2019, doi: 10.1016/j.egypro.2018.11.134.
- B. Moriset, “e-Business and e-Commerce,” in International Encyclopedia of Human Geography, Second Edi., vol. 4, Elsevier, 2020, pp. 1–10. doi: 10.1016/B978-0-08-102295-5.10044-7.
- A. Z. Tayibnapis, L. E. Wuryaningsih, and R. Gora, “The development of digital economy in Indonesia,” IJMBS Int. J. Manag. Bus. Stud., vol. 8, no. 3, pp. 14–18, 2018.
- A. Barata, “Strengthening national economic growth and equitable income through sharia digital economy in Indonesia,” J. Islam. Monet. Econ. Financ., vol. 5, no. 1, pp. 145–168, 2019.
- G. Masetti and L. Robol, “Computing performability measures in Markov chains by means of matrix functions,” J. Comput. Appl. Math., vol. 368, p. 112534, Apr. 2020, doi: 10.1016/j.cam.2019.112534.
- P. Davies and I. Ng, “Moving towards the Incomplete: A Research Agenda for the Development of Future Products in the Digital Economy,” Procedia Manuf., vol. 3, no. Ahfe, pp. 3368–3374, 2015, doi: 10.1016/j.promfg.2015.07.498.
- H. Xie, R. Pal, and S. Mitra, “A descriptive model of resting-state networks using Markov chains,” in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Aug. 2016, vol. 2016-Octob, pp. 3594–3597. doi: 10.1109/EMBC.2016.7591505.
- S. Nagaev, “The Analytical Approach to Recurrent Markov Chains Alternative to the Splitting Method and Its Applications,” in 2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO), Feb. 2016, no. 2, pp. 251–253. doi: 10.1109/SMRLO.2016.49.
- J. Munkhammar, D. van der Meer, and J. Widén, “Probabilistic forecasting of high-resolution clear-sky index time-series using a Markov-chain mixture distribution model,” Sol. Energy, vol. 184, pp. 688–695, May 2019, doi: 10.1016/j.solener.2019.04.014.
- J. I. Hidalgo et al., “Glucose forecasting combining Markov chain based enrichment of data, random grammatical evolution and Bagging,” Appl. Soft Comput., vol. 88, p. 105923, Mar. 2020, doi: 10.1016/j.asoc.2019.105923.
- H. Kang, K.-H. Cho, X. D. Zhang, T. Zeng, and L. Chen, “Inferring Sequential Order of Somatic Mutations during Tumorgenesis based on Markov Chain Model,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 12, no. 5, pp. 1094–1103, Sep. 2015, doi: 10.1109/TCBB.2015.2424408.
- S. Darcy, H. Yerbury, and H. Maxwell, “Disability citizenship and digital capital: the case of engagement with a social enterprise telco,” Inf. Commun. Soc., vol. 22, no. 4, pp. 538–553, 2019, doi: 10.1080/1369118X.2018.1548632.
- M. Marwiyah, P. P. Arti, and T. Hidayat, “An Analysis of Online Transportation Applications Between Gojek and Grab for Students,” Int. J. Sci. Educ. Cult. Stud., vol. 1, no. 1, pp. 52–64, 2022.
- A. Hindardjo, M. F. Pratama, and J. Ali, “Analysis of the Influence of Competence and Work Culture on Employee Performance with Moderation of Exit Intentions: A Case Study at Bank Syariah Indonesia,” Int. J. Manag. Sci. Appl., vol. 1, no. 1, pp. 1–17, 2022.