Формообразование листовых деталей с криволинейными бортами давлением эластомера
Автор: Мантусов М.Н., Моисеев В.К., Шаров А.А., Громова Е.Г., Рыжаков С.Г.
Журнал: Известия Самарского научного центра Российской академии наук @izvestiya-ssc
Рубрика: Машиностроение и машиноведение
Статья в выпуске: 1 т.23, 2021 года.
Бесплатный доступ
В статье авторы представляют метод стесненного изгиба листовых деталей с криволинейными бортами эластичной средой. Приводят описание процесса стесненного изгиба и схему проведения эксперимента. Изготовление детали осуществляется за два перехода, в результате первого перехода получается деталь с утонением в радиусной части. При втором переходе, на оснастке сниженной высоты, вначале формируется волна избыточного материала в радиусной зоне, которая осаживается на контур оправки с набором толщины. Приведены этапы формоизменения полуфабриката. Проведенный эксперимент показал осуществимость стесненного изгиба криволинейных бортов, измерения толщины стенки показали, что в результате второго перехода образуется утолщение стенки детали. Проводится конечно-элементное моделирование стеснённого изгиба для исследования влияния превышения борта на утолщение в зоне гиба. Проведены численные исследования происходящих деформационных процессов. Приведен пример диаграммы изменения толщины детали для различных этапов деформирования в результате проведенных численных исследований. Установлена зависимость превышения высоты борта с потерей устойчивости при формообразовании. Приведены примеры дефектов - складок.
Криволинейный борт, эластичная среда, стесненный изгиб, избыточный материал, толщина стенки, моделирование, диаграмма
Короткий адрес: https://sciup.org/148312705
IDR: 148312705 | DOI: 10.37313/1990-5378-2021-23-1-55-59
Текст научной статьи Формообразование листовых деталей с криволинейными бортами давлением эластомера
технологическом оснащении, а также для деталей небольших габаритов с прямолинейным в плане бортом, штампуемых с применением вы-соконагруженной эластичной среды. В настоящее время на кафедре производства ЛА Самарского университета имени С.П. Королева проводится работа по исследованию штамповки эластичной средой деталей с криволинейными бортами.
Конструктивными параметрами деталей, полученных с помощью операций гибки, являются высота борта, угол гибки и радиус гибки. Основными дефектами гнутых из листа деталей могут считаться величина отклонения угла малки борта и величина утонения стенки детали в зоне радиуса. Для исключения вышеуказанных дефектов в Самарском университете имени академика С.П. Королёва разрабатываются и исследуются различные способы штамповки-гибки эластомерами листовых деталей с приложением тангенциального сжатия к очагу деформации (стесненный изгиб). Хорошие результаты штамповки показывают схемы изготовления деталей гибкой с приложением тангенциального сжатия материала в зоне гиба, что приводит к повышению точности детали и увеличению толщины материала в радиусной зоне между бортом и стенкой.
В проводимых исследованиях штамповались детали из алюминиевого сплава Д16АМ толщиной 1,5 мм, радиус гиба – 4 мм на форм- блоке с криволинейными бортами в стальном контейнере путем вдавливания пластины в эластичную среду – полиуретан СКУ-7Л твердостью 86-88 единиц по Шору А (цилиндр высотой 60 мм и диаметром 100 мм).
На рисунке 1 показана разработанная схема стесненного изгиба криволинейных бортов инструментом из эластичного материала.
Согласно представленной схеме формообразование осуществляется за два перехода. На первом переходе заготовка (1) изгибается по формблоку-пуансону (3) под действием давления эластичной среды (полиуретана) (2), заключенной в контейнер (условно не показан). На втором переходе для обеспечения зазора между заготовкой и формблоком следует убрать проставку (4). Для предотвращения потери устойчивости изогнутого борта заготовки устанавливаются эластичные подпоры (5). Затем под действием полиуретана происходит окон- чательное формирование детали с утолщением материала по зоне радиуса гиба.
По схеме, представленной на рисунке 1, были проведены эксперименты по стеснённому изгибу выпуклых криволинейных бортов полиуретаном. На рисунке 2 представлено поэтапное формоизменение заготовки при нарастании усилия пресса. Предварительное формирование заготовок для последующего стеснённого изгиба производилось с постепенным увеличением давления qк эластомера, действующего на образец. Для первого этапа формовки достаточное усилие составило 700 кН. На втором переходе вначале формируется волна избыточного материала в радиусной зоне, которая осаживается на контур оправки с набором толщины. В ходе экспериментов было выявлено, что для реализации стесненного изгиба достаточное усилие пресса составляет 800 кН, что соответствует давлению 100 МПа.

a)


в)
Рис. 1. Схема процесса стесненного изгиба:
а) до деформирования; б) в конце первого перехода; в) до начала второго перехода; г) в конце второго перехода

г)

Pnp=25 кН, qK=3,2 МПа

Pnp=82,5 кН, q K =10,5 МПа
Рис. 2. Этапы формоизменения полуфабриката

Pn p =700 кН, q K =87,5 МПа

a)

б)

в)
Рис. 3. Изменение толщины материала ∆S2 в замеряемых точках, для различных значений превышения борта, при r = 4 мм, S = 1,5 мм, R = 150 мм для материала Д16АМ: а) в сечении 1; б) в сечении 2; в) в сечении 3
Проведенный эксперимент показал осуществимость стесненного изгиба криволинейных бортов, измерения толщины стенки показали, что в результате второго перехода образуется утолщение стенки детали на величину до 10% относительно начальной толщины, а в прилегающих к торцу зонах наблюдается краевой эффект максимального увеличения толщины.
Помимо эксперимента, проведено конечно-элементное моделирование стеснённого изгиба с применением программного комплекса «ANSYS/LS-DYNA». В частности, исследовано влияние превышения борта на утолщение в зоне гиба. В результате проведенной работы создана математическая модель процесса стесненного изгиба листовой заготовки с учетом воздействия эластичной матрицы. На базе разработанной математической модели проведены численные исследования происходящих деформационных процессов с учетом контактного взаимодействия эластичного инструмента с листовой заготовкой. В результате численных исследований получены диаграммы изменения толщины детали для различных этапов деформирования, пример диаграммы представлен на рисунке 3.
Установлено, что с увеличением превышения борта наблюдается рост утолщения в зоне гиба. Для материала Д16АМ наиболее равномерное распределение утолщения наблюдается при превышении борта ∆H = 1,5…1,8 мм c толщиной
S = 1,5 мм. А при превышении высоты борта более чем на 1,8 мм возникает потеря устойчивости борта, складкообразование в радиусной зоне (рисунок 4).
При экспериментальной штамповке деталей полиуретаном были также получены бракованные детали. Если высота борта слишком велика, то борт детали теряет устойчивость и на его поверхности появляются гофры, а увеличенная волна избыточного материала превращается в неисправимую складку (рисунок 5). Такие дефекты требуют дополнительных мер по их ликвидации, потому следует не допускать завышенных припусков.
Дополнительно проводятся исследования зависимости давления необходимого для реализации процесса от радиуса кривизны борта и превышения высоты борта.
Полученные на сегодняшний день результаты являются частью разрабатываемой методики проектирования технологического процесса стесненного изгиба деталей с криволинейными бортами эластомером, обеспечивающей утолщение стенки детали при минимизации радиуса гиба и уменьшение угла пружинения борта. Методика позволяет рассчитать параметры технологического процесса, определить размеры заготовки-полуфабриката. Область использования технологии охватывает листовое холодное заготовительно-штамповочное производство деталей прежде всего из цветных алюминиевых

Рис. 4. Дефект (складка) при превышении высоты борта Δ Н=2 мм

Рис. 5. Пример детали с дефектом (складка) в нижней части борта
сплавов с толщиной стенки до 3 мм, габаритами до 500 мм и более в зависимости от имеющегося оборудования.
Список литературы Формообразование листовых деталей с криволинейными бортами давлением эластомера
- Шаров А.А. Совершенствование технологии изготовления листовых деталей летательных аппаратов гибкой эластомерам: дисс.. канд. техн. наук. Самара, 2011. 147 с.
- Стеснённый изгиб эластичной средой криволинейных бортов листовых деталей / В. А. Барвинок, А. Д. Комаров, В. Г. Кулаков, В. К. Моисеев, А. А. Шаров // Вестник СГАУ.- 2012.- № 1(32). - С.77-86.
- Стеснённый изгиб в холодной листовой штамповке эластомером / В. Г. Кулаков, В. К. Моисеев, А. А. Шаров, О. В. Ломовской, А. Н. Плотников //Известия Самарского научного центра РАН.- 2013. Т.15.- № 6(4). - С.855-860.
- Штамповка листовых деталей с криволинейными бортами эластичным материалом / М.Н. Мантусов, В.К. Моисеев, А.А. Шаров, Е.Г. Громова, С.Г. Рыжаков // Известия Самарского научного центра РАН.- 2018. Т. 20. № 4(3). - С.332-336.