Формулы для прогибов и упрощенный метод Данкерли для расчета частоты колебаний плоской фермы

Автор: Кирсанов М.Н.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (109), 2023 года.

Бесплатный доступ

Объектом исследования является схема регулярной статически заданной фермы рамного типа. Решетка фермы в ригельной части конструкции — крестообразная. Методом индукции в системе символьной математики Maple выведена аналитическая зависимость прогиба фермы и перемещения подвижной опоры от числа панелей в ригеле. Операторы Maple использованы для обобщения решений для нескольких ферм с последовательно увеличивающимся числом панелей для общего случая. Расчет первой частоты колебаний конструкции по методу Данкерли упрощен за счет замены суммы парциальных частот вычислением произведения максимальной парциальной частоты на число степеней свободы, деленное на два.

Еще

Ферма, индукция, прогиб, клен, основная частота, метод Данкерли, упрощенное решение

Короткий адрес: https://sciup.org/143182700

IDR: 143182700   |   DOI: 10.4123/CUBS.109.7

Список литературы Формулы для прогибов и упрощенный метод Данкерли для расчета частоты колебаний плоской фермы

  • Macareno, L.M., Agirrebeitia, J., Angulo, C. and Avilés, R. (2008) FEM Subsystem Replacement Techniques for Strength Problems in Variable Geometry Trusses. Finite Elements in Analysis and Design, Elsevier, 44, 346–357. https://doi.org/10.1016/j.finel.2007.12.003.
  • Vatin, N., Havula, J., Martikainen, L., Sinelnikov, A.S., Orlova, A. V. and Salamakhin, S. V. (2014) Thin-Walled Cross-Sections and Their Joints: Tests and FEM-Modelling. Advanced Materials Research, 945–949, 1211–1215. https://doi.org/10.4028/www.scientific.net/AMR.945-949.1211.
  • Kirsanov, M.N. (2023) Deformations of a Three-Dimensional Model of a Trihedral Double Lattice Rod Tower. Vestnik MGSU. Monthly Journal on Construction and Architecture, 18, 1032–1038. https://doi.org/10.22227/1997-0935.2023.7.1032-1038.
  • Shchigol, E.D. (2023) The Formula for the Lower Estimate of the Natural Oscillations of a Flat Regular Girder Truss with a Rectilinear Upper Belt. Structural Mechanics and Structures, 37, 46–53. https://doi.org/10.36622/VSTU.2023.37.2.005.
  • Goloskokov, D.P. and Matrosov, A. V. (2018) Approximate Analytical Approach in Analyzing an Orthotropic Rectangular Plate with a Crack. Materials Physics and Mechanics, Institute of Problems of Mechanical Engineering, 36, 137–141. https://doi.org/10.18720/MPM.3612018_15.
  • Matrosov, A. V. (2022) An Exact Analytical Solution for a Free-Supported Micropolar Rectangle by the Method of Initial Functions. Zeitschrift fur Angewandte Mathematik und Physik, Birkhauser, 73. https://doi.org/10.1007/S00033-022-01714-Y.
  • Hutchinson, R.G. and Fleck, N.A. (2005) Microarchitectured Cellular Solids - The Hunt for Statically Determinate Periodic Trusses. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 85, 607–617. https://doi.org/10.1002/zamm.200410208.
  • Hutchinson, R.G. and Fleck, N.A. (2006) The Structural Performance of the Periodic Truss. Journal of the Mechanics and Physics of Solids, Pergamon, 54, 756–782. https://doi.org/10.1016/j.jmps.2005.10.008.
  • Kaveh, A. (2013) Optimal Analysis of Structures by Concepts of Symmetry and Regularity. Optimal Analysis of Structures by Concepts of Symmetry and Regularity, Springer-Verlag Wien, 9783709115, 1–463. https://doi.org/10.1007/978-3-7091-1565-7.
  • Kaveh, A., Rahami, H. and Shojaei, I. (2020) Swift Analysis of Civil Engineering Structures Using Graph Theory Methods. Springer International Publishing, Cham, 290. https://doi.org/10.1007/978-3-030-45549-1.
  • Kamgar, R. and Saadatpour, M.M. (2012) A Simple Mathematical Model for Free Vibration Analysis of Combined System Consisting of Framed Tube, Shear Core, Belt Truss and Outrigger System with Geometrical Discontinuities. Applied Mathematical Modelling, Elsevier, 36, 4918–4930. https://doi.org/10.1016/J.APM.2011.12.029.
  • Kirsanov, M. (2020) Trussed Frames and Arches: Schemes and Formulas. Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, GB https://cambridgescholars.com/product/978-1-5275-5976-9.
  • Komerzan, E.V., Lushnov, N.A. and Osipova, T.S. (2022) Analytical Calculation of the Deflection of a Planar Truss with an Arbitrary Number of Panels. Structural Mechanics and Structures, 33, 17–25. https://doi.org/10.36622/VSTU.2022.33.2.002.
  • Ivanitskii, A.D. (2022) Formulas for Calculating Deformations of a Planar Frame. Structural mechanics and structures, Voronezh State Technical University, 34, 90–98. https://doi.org/10.36622/VSTU.2022.34.3.007.
  • Komerzan, E. V., Maslov, A.N. (2023) Analytical Evaluation of a Regular Truss Natural Oscillations Fundamental Frequency. Structural Mechanics and Structures, 37, 17–26. https://doi.org/10.36622/VSTU.2023.37.2.002.
  • Komerzan, E. V., Maslov, A.N. (2023) Estimation of the L-Shaped Spatial Truss Fundamental Frequency Oscillations. Structural Mechanics and Structures, 37, 35–45. https://doi.org/10.36622/VSTU.2023.37.2.004.
  • Manukalo, A.S. (2023) Analysis of a Planar Sprengel Truss First Frequency Natural Oscillations Value. Structural Mechanics and Structures, 37, 54–60. https://doi.org/10.36622/VSTU.2023.37.2.006.
  • Georgoussis, G.K. (2006) A Simple Model for Assessing Periods of Vibration and Modal Response Quantities in Symmetrical Buildings. The Structural Design of Tall and Special Buildings, John Wiley & Sons, Ltd, 15, 139–151. https://doi.org/10.1002/TAL.286.
  • Sviridenko, O.V. and Komerzan, E.V. (2021) Analytical Calculation of the Deflection of a Plane External Statically Undeterminated Truss with an Arbitrary Number of Panels. Structural Mechanics and Structures, 2, 7–11. https://elibrary.ru/download/elibrary_46130662_20946175.pdf.
  • Kirsanov, M. (2021) Model and Analytical Calculation of a Spatial Truss. Lecture Notes in Civil Engineering, Springer Science and Business Media Deutschland GmbH, 150 LNCE, 496–503. https://doi.org/10.1007/978-3-030-72404-7_48/COVER.
  • Komerzan, E. Sviridenko, O. (2022) Static Deformations of the Truss of a Composite Spatial Frame. Analytical Solutions. Structural mechanics and structures, 35, 40–48. https://doi.org/10.36622/VSTU.2022.35.4.005.
  • Petrichenko, E.A. (2020) Lower Bound of the Natural Oscillation Frequency of the Fink Truss. Structural Mechanics and Structures, 26, 21–29. https://www.elibrary.ru/download/elibrary_44110287_71394021.pdf.
  • Galishnikova V.V. (2019) Nonlinear Numerical Stability Analysis of Space Trusses. EG-ICE 2010 - 17th international workshop on intelligent computing in engineering. https://www.elibrary.ru/item.asp?id=43274656.
  • Low, K.H. (2000) Modified Dunkerley Formula for Eigenfrequencies of Beams Carrying Concentrated Masses. International Journal of Mechanical Sciences, Elsevier Science Ltd, 42, 1287–1305. https://doi.org/10.1016/S0020-7403(99)00049-1.
  • Kirsanov, M.N. (2023) Simplified Dunkerley Method for Estimating the First Oscillation Frequency of a Regular Truss. Construction of Unique Buildings and Structures, 108, 10801. https://doi.org/10.4123/CUBS.108.1.
Еще
Статья научная