Генетические маркеры мясной продуктивности овец (Ovis aries L.). Сообщение I. Миостатин, кальпаин, кальпастатин

Автор: Трухачев В.И., Селионова М.И., Криворучко А.Ю., Айбазов А.М.М.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 6 т.53, 2018 года.

Бесплатный доступ

Тестирование по генам, ассоциированным с количественными и качественными показателями говядины от специализированных пород мясного скота - кальпастин-кальпаинового каскада ( САРN, САSТ ), миостатина ( MSTN ), ростового дифференцирующего фактора ( GDF5 ), тиреоглобулина ( ТG5 ), лептина ( LEP ), гена белка, связывающего жирные кислоты ( FABP4 ), - включено в селекционные программы в странах Америки, Европы и в Австралии (A.V. Een-ennaam, 2006; Y.F. Liu с соавт., 2010; U. Singha с соавт., 2014; A. Ciepłoch с соавт., 2017). С современным ростом производства баранины, который отмечается во всем мире, связано увеличение доли специализированных мясных пород и возрастающие требования к мясной продуктивности для мясошерстных и шерстных овец (А.М. Холманов с соавт., 2015; М.И. Селионова, 2015). Выявляются ассоциированные с такими показателями гены-кандидаты для их применения в селекции (D.W. Pethick с соавт., 2014). В представленном обзоре обобщены результаты работ по изучению биологической активности, генетической структуры и влиянию гена миостатина на показатели мясной продуктивности овец...

Еще

Овцы, мясная продуктивность, миостатин, кальпаин, сарn, кальпастатин, саsт, генетический полиморфизм, генное редактирование

Короткий адрес: https://sciup.org/142220059

IDR: 142220059   |   DOI: 10.15389/agrobiology.2018.6.1107rus

Список литературы Генетические маркеры мясной продуктивности овец (Ovis aries L.). Сообщение I. Миостатин, кальпаин, кальпастатин

  • Зиновьева Н.А., Костюнина О.В., Гладырь Е.А., Банникова А.Д., Харзинова В.Р., Ларионова П.В., Шавырина К.М., Эрнст Л.К. Роль ДНК-маркеров признаков продуктивности сельскохозяйственных животных. Зоотехния, 2013, 9: 5-7.
  • VanRaden P.M., Sullivan P.G. International genomic evaluation methods for dairy cattle. Genet. Sel. Evol., 2010, 42: 7 ( ) DOI: 10.1186/1297-9686-42-7
  • Eenennaam A.V. Marker-assisted selection in beef cattle. University of California department of animal science. 2006. Режим доступа: https://www.agrireseau.net/bovinsboucherie/docu-ments/Marker_Assisted_Selection_in_Beef_Cattle.pdf. Дата обращения: 16.01.2017.
  • Liu Y.F., Zan L.S., Li K., Zhao S.P., Xin Y.P., Lin Q., Tian W.Q., Wang Z.W. A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep., 2010, 37(1): 429-434 ( ) DOI: 10.1007/s11033-009-9604-5
  • Singha U., Deba R., Alyethodia R.R., Alexa R., Kumara S., Chakrabortyb S., Dhamac K., Sharmaa A. Molecular markers and their applications in cattle genetic research: a review. Biomarkers and Genomic Medicine, 2014, 6(2): 49-58 ( ) DOI: 10.1016/j.bgm.2014.03.001
  • Bellinge R.H., Liberles D.A., Iaschi S.P., O'brien P.A., Tay G.K. Myostatin and its implications on animal breeding: a review. Anim. Genet., 2005, 36(1): 1-6 ( )
  • DOI: 10.1111/j.1365-2052.2004.01229.x
  • Селионова М.И. Концептуальные подходы к инновационному развитию овцеводства. Информационный бюллетень Национального союза овцеводов, 2015, 2(10): 47-53.
  • Холманов А.М., Данкверт С.А., Осадчая О.Ю. Численность овец и производство баранины в мире. Овцы, козы, шерстяное дело, 2015, 4: 15-20.
  • Mortimer S.I., Werf J.H.J., Jacob R.H., Hopkins D.L., Pannier L., Pearce K.L., Gardner G.E., Warner R.D., Geesink G.H., Edwards J.E.H., Ponnampalam E.N., Ball A.J., Gilmour A.R., Pethick D.W. Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci., 2014, 96(2): 1016-1024 ( )
  • DOI: 10.1016/j.meatsci.2013.09.007
  • McRae A.F., Bishop S.C., Walling G.A., Wilson A.D., Visscher P.M. Mapping of multiple quantitative trait loci for growth and carcass traits in a complex commercial sheep pedigree. Anim. Sci., 2005, 80(2): 135-141 ( )
  • DOI: 10.1079/ASC41040135
  • Буйлов С.В., Ерохин А.И., Семенов С.И., Ульянов А.Н., Хамицаев Р.С. Разведение полутонкорунных мясошерстных овец. М., 1981.
  • Yan J.X., Harry R.A., Wait R., Welson S.Y., Emery P.W., Preedy V.R., Dunn M.J. Separation and identification of rat skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics, 2001, 1(3): 424-434 ( 10.1002/1615-9861(200103)1:33.0.CO;2-Y)
  • DOI: :10.1002/1615-9861
  • MacIntosch B.R., Gardiner P.F., McComas A.J. Skeletal muscle. Form and function. Human Kinetics, Champaign, 2006.
  • Byrne K., Vuocolo T., Gondro, C., White J.D., Cockett N.E., Hadfield T., Bidwell C.A., Waddell J.N., Tellam R.L. A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development. BMC Genomics, 2010, 11: 378 ( )
  • DOI: 10.1186/1471-2164-11-378
  • Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibe B., Bouix J., Caiment F., Elsen J.M., Eychenne F., Larzu, C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C., Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet., 2006, 38: 813-818 ( )
  • DOI: 10.1038/ng1810
  • Zhang C., Liu Y., Xu D., Wen Q., Li X., Zhang W., Yang L. Polymorphisms of myostatin gene (MSTN) in four goat breeds and their effects on Boer goat growth performance. Mol. Biol. Rep., 2012, 39(3): 3081-3087 ( )
  • DOI: 10.1007/s11033-011-1071-0
  • Grobet L., Martin L.J., Poncelet D., Pirottin D., Brouwers B., Riquet J., Schoeberlein A., Dunner S., Menissier F., Massabanda J., Fries R., Hanset R., Georges M. A deletion in the bovine myostatin gene causes the double muscled phenotype in cattle. Nat. Genet., 1997, 17: 71-74 ( )
  • DOI: 10.1038/ng0997-71
  • McPherron A.C., Lee S.J. Double muscling in cattle due to mutations in the myostatin gene. PNAS USA, 1997, 94(23): 12457-12461 ( )
  • DOI: 10.1073/pnas.94.23.12457
  • Stinckens A., Georges M., Buys N. Mutations in the myostatin gene leading to hyper muscularity in mammals: indications for a similar mechanism in fish? Anim. Genet., 2011, 42(3): 229-234 ( )
  • DOI: 10.1111/j.1365-2052.2010.02144.x
  • Mosher D.S., Quignon P., Bustamante C.D., Sutter N.B., Mellersh C.S., Parker H.G., Ostrander E.A. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet., 2007, 3(5): e79 ( )
  • DOI: 10.1371/journal.pgen.0030079
  • Miar Y., Salehi A., Kolbehdari D., Aleyasin S.A. Application of myostatin in sheep breeding programs: а review. Molecular Biology Research Communications, 2014, 3(1): 33-43.
  • Mirhoseini S., Zare J. The role of myostatin on growth and carcass traits and its application in animal breeding. Life Sci. J., 2012, 9: 2353-2357.
  • McPherron A.C., Lawler A.M., Lee S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997, 387: 83-90 ( )
  • DOI: 10.1038/387083a0
  • Kambadur R., Sharma M., Smith T.P.L, Bass J.J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue Cattle. Genome Res., 1997, 7: 910-915 ( )
  • DOI: 10.1101/gr.7.9.910
  • Dall’Olio S., Fontanesi L., Nanni Costa L., Tassinari M., Minieri L., Falaschini A. Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types. Journal of Biomedicine and Biotechnology, 2010, 2010: Article ID 542945 ( )
  • DOI: 10.1155/2010/542945
  • Gong Y.F., Li X.L., Liu Z.Z., Jin X.M., Zhou R.Y., Li L.H., Zhang Q. SNP detection and haplotype analysis in partial sequence of MSTN gene in sheep. Russian Journal of Genetics, 2009, 45: 1454 ( )
  • DOI: 10.1134/S1022795409120084
  • Han J.R.H., Forrest J.G., Hickford H. Genetic variations in the myostatin gene (MSTN) in New Zealand sheep breeds. Mol. Biol. Rep., 2013, 40(11): 6379-6384 ( )
  • DOI: 10.1007/s11033-013-2752-7
  • Трухачев В.И., Криворучко А.Ю., Скрипкин В.С., Яцык О.А. Полиморфизм гена миостатина (MSTN) у овец породы советский меринос. Вестник АПК Ставрополья, 2016, 2(22): 58-65.
  • Hickford J.G., Forrest R.H, Zhou H., Fang Q., Han J., Frampton C.M., Horrell A.L. Polymorphisms in the ovine myostatin gene (MSTN) and their association with growth and carcass traits in New Zealand Romney sheep. Anim. Genet., 2010, 41(1): 64-72 ( )
  • DOI: 10.1111/j.1365-2052.2009.01965.x
  • Sahu A.R., Jeichitra V., Rajendran R., Raja A. Polymorphism in exon 3 of myostatin (MSTN) gene and its association with growth traits in Indian sheep breeds. Small Ruminant Research, 2017, 149: 81-84 ( )
  • DOI: 10.1016/j.smallrumres.2017.01.009
  • Trukhachev V., Belyaev V., Kvochko A., Kulichenko A., Kovalev D., Pisarenko S., Volynkina A., Selionova M., Aybazov M., Shumaenko S., Omarov A., Mamontova T., Golovanova N., Yatsyk O., Krivoruchko A. Myostatin gene (MSTN) polymorphism with a negative effect on meat productivity in Dzhalginsky Merino sheep breed. Journal of BioScience and Biotechnology, 2015, 4(2): 191-199.
  • Lee S.J., McPherron A.C. Regulation of myostatin activity and muscle growth. PNAS USA, 2001, 98(16): 9306-9311 ( )
  • DOI: 10.1073/pnas.151270098
  • Casas E., Shackelford S.D., Keele J.W., Stone R.T., Kappes S.M., Koohmaraie M. Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J. Anim. Sci., 2000, 78(3): 560-569.
  • Jeanplong F., Sharma M., Somers W.G., Bass J.J., Kambadur R. Genomic organization and neonatal expression of the bovine myostatin gene. Mol. Cell. Biochem., 2001, 220(1-2): 31-37 ( )
  • DOI: 10.1023/A:1010801511963
  • Шишкин С.С. Миостатин и некоторые другие биохимические факторы, регулирующие рост мышечных тканей у человека и ряда высших позвоночных. Успехи биологической химии, 2004, 44: 209-262.
  • Kijas J.W., McCulloch R., Edwards J.E.H., Oddy V.H., Lee S.H., Van der Werf J. Evidence for multiple alleles effecting muscling and fatness at the Ovine GDF8 locus. BMC Genetics, 2007, 8: 80 ( )
  • DOI: 10.1186/1471-2156-8-80
  • Tellam R.L., Noelle E., Cockett N.E., Vuocolo T., Bidwell C.A. Genes contributing to genetic variation of muscling in sheep. Frontiers in Genetics, 2012, 3: 164 ( )
  • DOI: 10.3389/fgene.2012.00164
  • Johnston SE., Beraldi D., McRae A.F., Pemberton J.M., Slate J. Horn type and horn length genes map to the same chromosomal region in Soay sheep. Heredity, 2010, 104: 196-205 ( )
  • DOI: 10.1038/hdy.2009.109
  • Hennebry A., Berry C., Siriett V., O’Callaghan P., Chau L., Watson T., Sharma M., Kambadur R. Myostatin regulates fiber type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. Am. J. Physiol.-Cell Ph., 2009, 296(3): C525-C534 ( )
  • DOI: 10.1152/ajpcell.00259.2007
  • Liu C., Li W., Zhang X., Zhang N., He S., Huang J., Ge Y., Liu M. Knockdown of endogenous myostatin promotes sheep myoblast proliferation. In Vitro Cell. Dev.-An., 2014, 50(2): 94-102 ( )
  • DOI: 10.1007/s11626-013-9689-y
  • Hu S., Ni W., Sai W., Zi H., Qiao J., Wang P., Sheng J., Chen C. Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. PLoS ONE, 2013, 8(3): e58521 ( )
  • DOI: 10.1371/journal.pone.0058521
  • Zhao X., Ni W., Chen C., Sai W., Qiao J., Sheng J., Zhang H., Li G., Wang D., Hu S. Targeted editing of myostatin gene in sheep by transcription activator-like effector nucleases. Asian-Australas. J. Anim., 2016, 29(3): 413-418 ( )
  • DOI: 10.5713/ajas.15.0041
  • Carlson D.F., Tan W., Lillico S.G., Stverakova D., Proudfoot C., Christian M., Voytas D.F., Long C.R., Whitelaw C.B.A., Fahrenkrug S.C. Efficient TALEN-mediated gene knockout in livestock. PNAS, 2012, 109: 17382-17387 ( )
  • DOI: 10.1073/pnas.1211446109
  • Proudfoot C., Carlson D.F., Huddart R., Long C.R., Pryor J.H., King T.J., Lillico S.G., Mileham A.J., McLaren D.G., Whitelaw C. Bruce A., Fahrenkrug S.C. Genome edited sheep and cattle. Transgenic Res., 2015, 24(1): 147-153 ( )
  • DOI: 10.1007/s11248-014-9832-x
  • Crispo M., Mulet A., Tesson L., Barrera N., Cuadro F., Santos-Neto P., Nguyen T., Crénéguy A., Brusselle L., Anegón I., Menchaca A. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE, 2015, 10(8): e0136690 ( )
  • DOI: 10.1371/journal.pone.0136690
  • Sawatari E., Seki R., Adachi T., Hashimoto H.U.S., Wakamatsu Y., Nakata T., Kinoshita M. Overexpression of the dominant-negative form of myostatin results in doubling of muscle fiber number in transgenic medaka (Oryzias latipes). Comp. Biochem. Phys. A, 2010, 155(2): 183-189 ( )
  • DOI: 10.1016/j.cbpa.2009.10.030
  • Lee C.Y., Hu S.Y., Gong H.Y., Chen M.H.C., Lu J.K., Wu J.L. Suppression of myostatin with vector-based RNA interference causes a double-muscle effect in transgenic zebrafish. Biochem. Bioph. Res. Co., 2009, 387(4): 766-771 ( )
  • DOI: 10.1016/j.bbrc.2009.07.110
  • Lee S.J. Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways. PLoS ONE, 2007, 2: e789 ( )
  • DOI: 10.1371/journal.pone.0000789
  • Haidet A., Rizo L., Handy C., Umapathi P., Eagle A., Shilling C., Boue D., Martin P., Sahenk Z., Mendell J., Kaspar B. Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. PNAS USA, 2008, 105(11): 4318-4322 ( )
  • DOI: 10.1073/pnas.0709144105
  • Lee S.J., McPherron A.C. Regulation of myostatin activity and muscle growth. PNAS USA, 2001, 98(16): 9306-9311 ( )
  • DOI: 10.1073/pnas.151270098
  • Nishi M., Yasue A., Nishimatu S., Nohno T., Yamaoka T., Itakura M., Moriyama K., Ohuchi H., Noji S. A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle. Biochem. Bioph. Res. Co., 2002, 293(1): 247-251 ( )
  • DOI: 10.1016/S0006-291X(02)00209-7
  • Johnson P.L., Dodds K.G., Bain W.E., Greer G.J., McLean N.J., McLaren R.J., Galloway S.M., Stijn T.C., McEwan J.C. Investigations into the GDF8 g+6723G-A polymorphism in New Zealand Texel sheep. J. Anim. Sci., 2009, 87: 1856-1864 ( )
  • DOI: 10.2527/jas.2008-1508
  • Masri A.Y., Lambe N.R., Macfarlane J.M., Brotherstone S., Haresign W., Bunger L. Evaluating the effects of the c.*1232G>A mutation and TM-QTL in Texel ½ Welsh Mountain lambs using ultrasound and video image analyses. Small Rumin. Res., 2011, 99(2-3): 99-109 ( )
  • DOI: 10.1016/j.smallrumres.2011.03.047
  • Masri A.Y., Lamb N.R., Macfarlan J.M., Brotherston S., Haresi W., Bunge L. Evaluating the effects of a single copy of a mutation in the myostatin gene (c.*1232G>A) on carcass traits in crossbred lambs. Meat Sci., 2011, 87(4): 412-418 ( )
  • DOI: 10.1016/j.meatsci.2010.11.019
  • Hadjipavlou G., Matika O., Clop A., Bishop S.C. Two single nucleotide polymorphisms in the myostatin (GDF8) gene have significant association with muscle depth of commercial Charollais sheep. Anim. Genet., 2008, 39(4): 346-353 ( )
  • DOI: 10.1111/j.1365-2052.2008.01734.x
  • Hope M., Haynes F., Oddy H., Koohmaraie M., Al-Owaimer A., Geesink G. The effects of the myostatin g+6723G>A mutation on carcass and meat quality of lamb. Meat Sci., 2013, 95(1): 118-122 ( )
  • DOI: 10.1016/j.meatsci.2013.03.029
  • Wang J., Zhou H., Hu J., Li S., Luo Y., Hickford J.G. Two single nucleotide polymorphisms in the promoter of the ovine myostatin gene (MSTN) and their effect on growth and carcass muscle traits in New Zealand Romney sheep. J. Anim. Breed. Genet., 2016, 133(3): 219-226 ( )
  • DOI: 10.1111/jbg.12171
  • Boman I.A., Klemetsdal G., Nafstad O., Blichfeldt T., Vage D.I. Impact of two myostatin (MSTN) mutations on weight gain and lamb carcass classification in Norwegian White Sheep (Ovis aries). Genet. Sel. Evol., 2010, 42: 4 ( )
  • DOI: 10.1186/1297-9686-42-4
  • Farhadian M., Hashemi A. Molecular characterization and phylogeny based analysis of intron i sequence of myostatin (MSTN) gene in Iranian Makuei sheep breed. Ann. Anim. Sci., 2016, 16(4): 1007-1018 ( )
  • DOI: 10.1515/aoas-2016-0013
  • Ansary M., Tahmoorespur M., Nassiry M., Taheri A., Valeh M. Polymorphism in intron-1 of myostatin gene and its association with estimated breeding values of growth traits in Baluchi sheep. Indian J. Anim. Sci., 2011, 81(8): 849-852.
  • Bouyer C., Forestier L., Renand G., Oulmouden A. Deep intronic mutation and pseudo exon activation as a novel muscular hypertrophy modifier in cattle. PLoS ONE, 2014, 9(5): e97399 ( )
  • DOI: 10.1371/journal.pone.0097399
  • Ciepłoch A., Rutkowska K., Oprządek J., Poławska E. Genetic disorders in beef cattle: a review. Genes Genom., 2017, 39(5): 461-471 ( )
  • DOI: 10.1007/s13258-017-0525-8
  • Palmer B.R., Morton J.D., Roberts N., Ilian M.A., Bickerstaffe R. Marker-assisted selection for meat quality and the ovine calpastatin gene. Proc. New Zeal. Soc. An., 1999, 59: 266-268.
  • Sensky P.L., Parr T., Bardsley R.G., Buttery P.J. Postmortem proteolysis in muscle and meat quality and phenotypic and genetic correlations for bovine postrigor calpastatin activity, intramuscular fat content, variable activity of the calpain proteolytic system. Meat and Livestock Commission, Loughborough, UK, 2000.
  • Koohmaraie M. The role of Ca2+-dependent proteases (calpain) in post-mortem proteolysis and meat tenderness. Biochimie, 1992, 74(3): 239-245 ( )
  • DOI: 10.1016/0300-9084(92)90122-U
  • Ma H., Yang H.Q., Takano E., Hatanaka M., Maki M. Amino terminal conserved region in proteinase inhibitor domain of calpastatin potentiates its calpain inhibitory activity by interaction with calmodualin-like domain of the proteinase. J. Biol. Chem., 1994, 269(39): 24430-24436.
  • Goll D.E., Thompson V.F., Li H., Wei W., Cong J. The calpain system. Physiol. Rev., 2003, 83(3): 731-801 ( )
  • DOI: 10.1152/physrev.00029.2002
  • Pomponio L., Ertbjerg P. The effect of temperature on the activity of μ-and m-calpain and calpastatin during post-mortem storage of porcine longissimus muscle. Meat Sci., 2012, 91(1): 50-55 ( )
  • DOI: 10.1016/j.meatsci.2011.12.005
  • Kumar N.S., Jayashankar M.R., Ramakrishnappa N., Nagaraja C.S., Fairoze N., Satyanarayana K. Genetic polymorphism of ovine calpain gene in bandur sheep. International Journal of Science, Environment and Technology, 2015, 4(3): 804-812.
  • Chung H.Y., Davis M.E., Hines H.C. A DNA polymorphism of the bovine calpastatin gene detected by SSCP analysis. Anim. Genet., 1999, 30(1): 80-81 ( )
  • DOI: 10.1046/j.1365-2052.1999.00323-20.x
  • Azari M.A., Dehnavi E., Yousefi S., Shahmohamdi L. Polymorphism of Calpastatin, Calpain and myostatin genes in native Dalagh sheep in Iran. Slovak Journal of Animal Science, 2012, 45(1): 1-6.
  • Shahroudi F.E., Nassiry M.R., Valizadh R., Moussavi A.H., Tahmoorespour M., Ghiasi H. Genetic polymorphism at MTNR1A, CAST and CAPN loci in Iranian Karakul sheep. Iranian Journal of Biotechnology, 2006, 4(2): 117-122.
  • Nassiry M.R., Shahroudi F.E., Tahmoorespour M., Javadmanesh A. Genetic variability and population structure in beta-lactoglobulin, calpastatin and calpain loci in Iranian Kurdi sheep. Pakistan Journal of Biological Sciences, 2007, 10(7): 1062-1067 ( )
  • DOI: 10.3923/pjbs.2007.1062.1067
  • Arora R.R., Yadav H.S., Yadav D.K. Identification of novel single nucleotide polymorphisms in candidate genes for mutton quality in Indian sheep. Animal Molecular Breeding, 2014, 4(1): 1-5 ( )
  • DOI: 10.5376/amb.2014.04.0001
  • Lonergan S.M., Ernst C.W., Bishop M.D., Calkins C.R., Koohmaraie M. Relationship of restriction fragment length polymorphisms (RFLP) at the bovine calpastatin locus to calpastatin activity and meat tenderness. J. Anim. Sci., 1995, 73(12): 3608-3612 ( )
  • DOI: 10.2527/1995.73123608x
  • Fang Q., Forrest R.H., Zhou H., Frampton C.M., Hickford J.G.H. Variation in exon 10 of the ovine calpain 3 gene (CAPN3) and its association with meat yield in New Zealand Romney sheep. Meat Sci., 2013, 94(3): 388-390 ( )
  • DOI: 10.1016/j.meatsci.2013.03.015
  • Muto Y., Morton J., Palmer D. Investigation of biochemical changes of the ovine calpain 3 exon-10 polymorphism. Mol. Cell. Probe., 2015, 29(6): 382-388 ( )
  • DOI: 10.1016/j.mcp.2015.09.002
  • Palmer B.R., Roberts N., Hickford J.G.H., Staffe R. Rapid communication: PCR-RFLP of MspI and NcoI in the ovine calpastatin gene. J. Anim. Sci., 1998, 76(5): 1499-1500 ( )
  • DOI: 10.2527/1998.7651499x
  • Aali M., Moradi-Shahrbabak M., Moradi-Shahrbabak H., Sadeghi M. Detecting novel SNPs and breed-specific haplotypes at calpastatin Gene in Iranian fat-and thin-tailed sheep breeds and their effects on protein structure. Gene, 2014, 537(1): 132-139 ( )
  • DOI: 10.1016/j.gene.2013.12.023
  • Shahram N., Goodarzi M. Polymorphism of candidate genes for meat production in Lori sheep. IERI Procedia, 2014, 8: 18-23 ( )
  • DOI: 10.1016/j.ieri.2014.09.004
  • Shahabodin G., Abbasi H.A., Irani M., Abdullahpour R., Mirhabibi S. Polymorphism investigation of calpastatin gene in Zel sheep population of Iran by PCR-RFLP method. Afr. J. Biotechnol., 2012, 11(13): 3211-3214 ( )
  • DOI: 10.5897/AJB11.3256
  • Suleman M., Khan S.U., Riaz M.N., Yousaf M., Shah A., Ishaq R., Ghafoor A. Calpastatin (CAST) gene polymorphism in Kajli, Lohi and Thalli sheep breeds. Afr. J. Biotechnol., 2012, 11(47): 10655-10660 ( )
  • DOI: 10.5897/AJB11.2478
  • Zhou H., Hickford J.G., Gong H. Polymorphism of the ovine calpastatin gene. Mol. Cell. Probe., 2007, 21(3): 242-244 ( )
  • DOI: 10.1016/j.mcp.2006.10.004
  • Byun S.O., Zhou H., Hickford J.G.H. Haplotypic diversity within the ovine calpastatin (CAST) gene. Mol. Biotechnol., 2009, 41(2): 133-137 ( )
  • DOI: 10.1007/s12033-008-9103-2
  • Nassiry M.R., Tahmoorespour M., Javadmanesh A., Soltani M., Foroutani Far S. Calpastatin polymorphism and its association with daily gain in Kurdi sheep. Iran. J. Biotecnol., 2006, 4(3): 188-192.
  • Mahdavi Mamaghani A., Shoja J., Pirani N., Elyasi Gh. Comparing polymorphism of calpastatin gene using PCR-SSCP method in Ghezel sheep and Sarabi Cows. Animal Science Research Journal, 2008, 19(1): 2-10.
  • Tahmoorespur M., Ahmadi H. A neural network model to describe weight gain of sheep from genes polymorphism, birth weight and birth type. Livest. Sci., 2012, 148(3): 221-226 ( )
  • DOI: 10.1016/j.livsci.2012.06.008
  • Pethick D.W., Ball A.J., Banks R.G., Gardner G.E., Rowe J.B., Jacob R.H. Translating science into the next generation meat quality program for Australian lamb. Meat Sci., 2014, 96(2): 1013-1015 ( )
  • DOI: 10.1016/j.meatsci.2013.09.011
Еще
Статья обзорная