Генетические особенности опухолей невыявленной первичной локализации
Автор: Щеголева А.А., Третьякова М.С., Воробьев Р.С., Ананина О.А., Бокова У.А., Денисов Е.В.
Журнал: Сибирский онкологический журнал @siboncoj
Рубрика: Клинические исследования
Статья в выпуске: 6 т.21, 2022 года.
Бесплатный доступ
Введение. Опухоли невыявленной первичной локализации (ОНПЛ) представляют собой метастатические очаги, для которых стандартное диагностическое исследование не позволяет определить первичный опухолевый очаг на момент постановки диагноза. Частота выявления ОНПЛ невысокая, однако данное заболевание характеризуется агрессивностью течения, низкой эффективностью лечения и плохой выживаемостью. Поэтому понимание биологии и механизмов формирования этих злокачественных новообразований является важной задачей. Цель исследования - идентификация генетических нарушений, характерных для ОНПЛ. Материал и методы. В исследовании использовалось полноэкзомное секвенирование образцов ОНПЛ. Результаты. В ОНПЛ обнаружены однонуклеотидные изменения в гене эфринового рецептора EPHA8. Помимо этого, для ОНПЛ были характерны аберрации числа копий ДНК в хромосомных регионах, содержащих гены ID2, FOXD4, ZMYND11, ZNF596, KIDINS220, LRRN1, GEMIN4, CEP72, TPPP и MXRA5. Функциональное аннотирование вышеуказанных генов показало их вовлеченность в транскрипцию, биогенез микроРНК, клеточный цитоскелет, адгезию, ремоделирование внеклеточного матрикса, пролиферацию, апоптоз и эпителиально-мезенхимальный переход. Заключение. Для ОНПЛ характерны нарушения генов, вовлеченных в регуляцию различных биологических процессов, главным образом клеточной миграции.
Метастаз, невыявленный первичный очаг, мутация, ген, секвенирование
Короткий адрес: https://sciup.org/140296692
IDR: 140296692 | DOI: 10.21294/1814-4861-2022-21-6-38-46
Список литературы Генетические особенности опухолей невыявленной первичной локализации
- Kato S., Alsafar A., Walavalkar V., Hainsworth J., Kurzrock R. Cancer of Unknown Primary in the Molecular Era. Trends Cancer. 2021; 7(5): 465-77. https://doi.org/10.1016/j.trecan.2020.11.002.
- Urban D., Rao A., Bressel M., Lawrence Y.R., Mileshkin L. Cancer of unknown primary: a population-based analysis of temporal change and socioeconomic disparities. Br J Cancer. 2013; 109(5): 1318-24. https://doi.org/10.1038/bjc.2013.386.
- Rassy E., Pavlidis N. The currently declining incidence of cancer of unknown primary. Cancer Epidemiol. 2019; 61: 139-41. https://doi.org/10.1016/j.canep.2019.06.006.
- Fizazi K., Greco F.A., Pavlidis N., Daugaard G., Oien K., Pentheroudakis G.; ESMO Guidelines Committee. Cancers of unknown primary site: ESMO Clinical Practice Guidelines for diagnosis, treatment and followup. Ann Oncol. 2015; 26 Suppl 5: 133-8. https://doi.org/10.1093/annonc/mdv305.
- Pavlidis N., Khaled H., Gaafar R. A mini review on cancer of unknown primary site: A clinical puzzle for the oncologists. J Adv Res. 2015; 6(3): 375-82. https://doi.org/10.1016/j.jare.2014.11.007.
- Rassy E., Assi T., Pavlidis N. Exploring the biological hallmarks of cancer of unknown primary: where do we stand today? Br J Cancer. 2020; 122(8): 1124-32. https://doi.org/10.1038/s41416-019-0723-z.
- Alshareeda A.T., Al-Sowayan B.S., Alkharji R.R., Aldosari S.M., Al Subayyil A.M., Alghuwainem A. Cancer of Unknown Primary Site: Real Entity or Misdiagnosed Disease? J Cancer. 2020; 11(13): 3919-31. https://doi.org/10.7150/jca.42880.
- Klein C.A. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009; 9(4): 302-12. https://doi.org/10.1038/nrc2627.
- El Rassy E., Pavlidis N. The current evidence for a biomarker-based approach in cancer of unknown primary. Cancer Treat Rev. 2018; 67: 21-8. https://doi.org/10.1016/j.ctrv.2018.04.011.
- Denisov E.V., Perelmuter V.M. A fxed partial epithelial-mesenchymal transition (EMT) triggers carcinogenesis, whereas asymmetrical division of hybrid EMT cells drives cancer progression. Hepatology. 2018; 68(3): 807-10. https://doi.org/10.1002/hep.29784.
- Lombardo R., Tosi F., Nocerino A., Bencardino K., Gambi V., Ricotta R., Spina F., Siena S., Sartore-Bianchi A. The Quest for Improving Treatment of Cancer of Unknown Primary (CUP) Through MolecularlyDriven Treatments: A Systematic Review. Front Oncol. 2020; 10: 533. https://doi.org/10.3389/fonc.2020.00533.
- Ross J.S., Wang K., Gay L., Otto G.A., White E., Iwanik K., Palmer G., Yelensky R., Lipson D.M., Chmielecki J., Erlich R.L., Rankin A.N., Ali S.M., Elvin J.A., Morosini D., Miller V.A., Stephens P.J. Comprehensive Genomic Profling of Carcinoma of Unknown Primary Site: New Routes to Targeted Therapies. JAMA Oncol. 2015; 1(1): 40-9. https://doi.org/10.1001/jamaoncol.2014.216. Erratum in: JAMA Oncol. 2019; 5(8): 1232.
- Laprovitera N., Riefolo M., Ambrosini E., Klec C., Pichler M., Ferracin M. Cancer of Unknown Primary: Challenges and Progress in Clinical Management. Cancers (Basel). 2021; 13(3): 451. https://doi.org/10.3390/cancers13030451.
- Natoli C., Ramazzotti V., Nappi O., Giacomini P., Palmeri S., Salvatore M., Landriscina M., Zilli M., Natali P.G., Tinari N., Iacobelli S. Unknown primary tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2011; 1816(1): 13-24. https://doi.org/10.1016/j.bbcan.2011.02.002.
- Karavasilis V., Malamou-Mitsi V., Briasoulis E., Tsanou E., Kitsou E., Kalofonos H., Fountzilas G., Fotsis T., Pavlidis N. Matrix metalloproteinases in carcinoma of unknown primary. Cancer. 2005; 104(10): 2282-7. https://doi.org/10.1002/cncr.21454.
- Van der Auwera G.A., Carneiro M.O., Hartl C., Poplin R., Del Angel G., Levy-Moonshine A., Jordan T., Shakir K., Roazen D., Thibault J., Banks E., Garimella K.V., Altshuler D., Gabriel S., DePristo M.A. From FastQ data to high confdence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013; 43(1110): 11.10.1-11.10.33. https://doi.org/10.1002/0471250953.bi1110s43.
- Wang K., Li M., Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010; 38(16): 164. https://doi.org/10.1093/nar/gkq603.
- Martínez-Jiménez F., Muiños F., Sentís I., Deu-Pons J., ReyesSalazar I., Arnedo-Pac C., Mularoni L., Pich O., Bonet J., Kranas H., Gonzalez-Perez A., Lopez-Bigas N. A compendium of mutational cancer driver genes. Nat Rev Cancer. 2020; 20(10): 555-72. https://doi.org/10.1038/s41568-020-0290-x.
- Liberzon A., Birger C., Thorvaldsdóttir H., Ghandi M., Mesirov J.P., Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015; 1(6): 417-25. https://doi.org/10.1016/j.cels.2015.12.004.
- Talevich E., Shain A.H., Botton T., Bastian B.C. CNVkit: GenomeWide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput Biol. 2016; 12(4). https://doi.org/10.1371/journal. pcbi.1004873.
- Olshen A.B., Bengtsson H., Neuvial P., Spellman P.T., Olshen R.A., Seshan V.E. Parent-specifc copy number in paired tumor-normal studies using circular binary segmentation. Bioinformatics. 2011; 27(15): 2038-46. https://doi.org/10.1093/bioinformatics/btr329.
- Venkatraman E.S., Olshen A.B. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics. 2007; 23(6): 657-63. https://doi.org/10.1093/bioinformatics/btl646.
- Varghese A.M., Arora A., Capanu M., Camacho N., Won H.H., Zehir A., Gao J., Chakravarty D., Schultz N., Klimstra D.S., Ladanyi M., Hyman D.M., Solit D.B., Berger M.F., Saltz L.B. Clinical and molecular characterization of patients with cancer of unknown primary in the modern era. Ann Oncol. 2017; 28(12): 3015-21. https://doi.org/10.1093/annonc/mdx545.
- Löffer H., Pfarr N., Kriegsmann M., Endris V., Hielscher T., Lohneis P., Folprecht G., Stenzinger A., Dietel M., Weichert W., Krämer A. Molecular driver alterations and their clinical relevance in cancer of unknown primary site. Oncotarget. 2016; 7(28): 44322-9. https://doi.org/10.18632/oncotarget.10035.
- Gatalica Z., Xiu J., Swensen J., Vranic S. Comprehensive analysis of cancers of unknown primary for the biomarkers of response to immune checkpoint blockade therapy. Eur J Cancer. 2018; 94: 179-86. https://doi.org/10.1016/j.ejca.2018.02.021.
- Wang G.H., Ni K., Gu C., Huang J., Chen J., Wang X.D., Ni Q. EphA8 inhibits cell apoptosis via AKT signaling and is associated with poor prognosis in breast cancer. Oncol Rep. 2021; 46(2): 183. https://doi.org/10.3892/or.2021.8134.
- Wang Y., Zhou N., Li P., Wu H., Wang Q., Gao X., Wang X., Huang J. EphA8 acts as an oncogene and contributes to poor prognosis in gastric cancer via regulation of ADAM10. J Cell Physiol. 2019; 234(11): 20408-19. https://doi.org/10.1002/jcp.28642.
- Liu X., Xu Y., Jin Q., Wang W., Zhang S., Wang X., Zhang Y., Xu X., Huang J. EphA8 is a prognostic marker for epithelial ovarian cancer. Oncotarget. 2016; 7(15): 20801-9. https://doi.org/10.18632/oncotarget.8018.
- Chang Y.H., Lin P.H., Chen C.C., Weng W.H., Yu K.J., Liu C.Y., Hsieh C.H., Chang T.H., Shao I.H., Kan H.C., Chuang C.K., Pang S.T. Gain of TPPP as a predictor of progression in patients with bladder cancer. Exp Ther Med. 2021; 22(5): 1204. https://doi.org/10.3892/etm.2021.10638.
- Xiong D., Li G., Li K., Xu Q., Pan Z., Ding F., Vedell P., Liu P., Cui P., Hua X., Jiang H., Yin Y., Zhu Z., Li X., Zhang B., Ma D., Wang Y., You M. Exome sequencing identifes MXRA5 as a novel cancer gene frequently mutated in non-small cell lung carcinoma from Chinese patients. Carcinogenesis. 2012; 33(9): 1797-805. https://doi.org/10.1093/carcin/bgs210.
- Mao W., Wang K., Sun S., Wu J., Chen M., Geng J., Luo M. ID2 Inhibits Bladder Cancer Progression and Metastasis via PI3K/AKT Signaling Pathway. Front Cell Dev Biol. 2021; 9: 738364. https://doi.org/10.3389/fcell.2021.738364.
- Peng W., Chen J., He R., Tang Y., Jiang J., Li Y. ID2 inhibits lung adenocarcinoma cell malignant behaviors by inhibiting the activation of the PI3K/AKT/mTOR signaling pathway. Tissue and Cell. 2022; 8: 101950. https://doi.org/10.1016/j.tice.2022.101950.
- Chen J.T., Hsu Y.L., Hsu Y.C., Tseng Y.H., Liu M.H., Weng C.W., Lin C.H., Pan S.H., Chen J.J.W., Wang C.C. Id2 exerts tumor suppressor properties in lung cancer through its effects on cancer cell invasion and migration. Front Oncol. 2022; 12: 801300. https://doi.org/10.3389/fonc.2022.801300.
- Bolik J., Krause F., Stevanovic M., Gandraß M., Thomsen I., Schacht S.S., Rieser E., Müller M., Schumacher N., Fritsch J., Wichert R., Galun E., Bergmann J., Röder C., Schafmayer C., Egberts J.H., BeckerPauly C., Saftig P., Lucius R., Schneider-Brachert W., Barikbin R., Adam D., Voss M., Hitzl W., Krüger A., Strilic B., Sagi I., Walczak H., Rose-John S., Schmidt-Arras D. Inhibition of ADAM17 impairs endothelial cell necroptosis and blocks metastasis. J Exp Med. 2022; 219(1). https://doi.org/10.1084/jem.20201039.
- Wen H., Li Y., Xi Y., Jiang S., Stratton S., Peng D., Tanaka K., Ren Y., Xia Z., Wu J., Li B., Barton M.C., Li W., Li H., Shi X. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature. 2014; 508(7495): 263-8. https://doi.org/10.1038/nature13045.
- Cai S., Sun Z., Sun P.H., Gao X., Ji K., Tian X., Ji J., Hao C., Soliman F., Liu C., Al-Sarireh B., Griffths P., Hiscox S., Jiang W.G., Ye L. Reduced kinase D interacting substrate of 220 kDa (Kidins220) in pancreatic cancer promotes EGFR/ERK signalling and disease progression. Int J Oncol. 2021; 58(6): 34. https://doi.org/10.3892/ijo.2021.5214.
- Cui J., Yuan Y., Shanmugam M.K., Anbalagan D., Tan T.Z., Sethi G., Kumar A.P., Lim L.H.K. MicroRNA-196a promotes renal cancer cell migration and invasion by targeting BRAM1 to regulate SMAD and MAPK signaling pathways. Int J Biol Sci. 2021; 17(15): 4254-70. https://doi.org/10.7150/ijbs.60805.
- Plotnik J.P., Hollenhorst P.C. Interaction with ZMYND11 mediates opposing roles of Ras-responsive transcription factors ETS1 and ETS2. Nucleic Acids Res. 2017; 45(8): 4452-62. https://doi.org/10.1093/nar/gkx039.
- Zhang Y., Liu Q., Yang S., Liao Q. Knockdown of LRRN1 inhibits malignant phenotypes through the regulation of HIF-1α/Notch pathway in pancreatic ductal adenocarcinoma. Mol Ther Oncolytics. 2021; 23: 51-64. https://doi.org/10.1016/j.omto.2021.08.012.
- Liu B., Zhang Y., Fan Y., Wang S., Li Z., Deng M., Li C., Wang J., Ma R., Wang X., Wang Y., Xu L., Hou K., Che X., Liu Y., Qu X. Leucinerich repeat neuronal protein-1 suppresses apoptosis of gastric cancer cells through regulation of Fas/FasL. Cancer Sci. 2019; 110(7): 2145-55. https://doi.org/10.1111/cas.14042.
- Ni J., Wang J., Fu Y., Yan C., Zhu M., Jiang Y., Chen J., Ding Y., Fan X., Li G., Jin G. Functional genetic variants in centrosome-related genes CEP72 and YWHAG confer susceptibility to gastric cancer. Arch Toxicol. 2020; 94(8): 2861-72. https://doi.org/10.1007/s00204-020-02782-7.
- Li X., Dong P., Wei W., Jiang L., Guo S., Huang C., Liu Z., Chen J., Zhou F., Xie D., Liu Z. Overexpression of CEP72 Promotes Bladder Urothelial Carcinoma Cell Aggressiveness via Epigenetic CREB-Mediated Induction of SERPINE1. Am J Pathol. 2019; 189(6): 1284-97. https://doi.org/10.1016/j.ajpath.2019.02.014. Erratum in: Am J Pathol. 2021; 191(6): 1151-2.
- Chen Q., Yang C., Chen L., Zhang J.J., Ge W.L., Yuan H., Meng L.D., Huang X.M., Shen P., Miao Y., Jiang K.R. YY1 targets tubulin polymerisation-promoting protein to inhibit migration, invasion and angiogenesis in pancreatic cancer via p38/MAPK and PI3K/AKT pathways. Br J Cancer. 2019; 121(11): 912-21. https://doi.org/10.1038/s41416-019-0604-5.
- Chen C., Aihemaiti M., Zhang X., Qu H., Jiao J., Sun Q., Yu W. FOXD4 induces tumor progression in colorectal cancer by regulation of the SNAI3/CDH1 axis. Cancer Biol Ther. 2018; 19(11): 1065-71. https://doi.org/10.1080/15384047.2018.1480291.
- Ma C.G., Xu W.H., Xu Y., Wang J., Liu W.R., Cao D.L., Wang H.K., Shi G.H., Zhu Y.P., Qu Y.Y., Zhang H.L., Ye D.W. Identifcation and validation of novel metastasis-related signatures of clear cell renal cell carcinoma using gene expression databases. Am J Transl Res. 2020; 12(8): 4108-26.
- He Y., Chen X., Liu H., Xiao H., Kwapong W.R., Mei J. Matrixremodeling associated 5 as a novel tissue biomarker predicts poor prognosis in non-small cell lung cancers. Cancer Biomark. 2015; 15(5): 645-51. https://doi.org/10.3233/CBM-150504.
- Yuan Y., Chen J., Wang J., Xu M., Zhang Y., Sun P., Liang L. Development and Clinical Validation of a Novel 4-Gene Prognostic Signature Predicting Survival in Colorectal Cancer. Front Oncol. 2020; 10: 595. https://doi.org/10.3389/fonc.2020.00595.