Генная инженерия в онкологии, основанная на технологии CRISPR-CAS9
Автор: Полатова Д.Ш., Мадаминов А.Ю., Савкин А.В., Ибрагимова Д.А.
Журнал: Сибирский онкологический журнал @siboncoj
Рубрика: Обзоры
Статья в выпуске: 4 т.23, 2024 года.
Бесплатный доступ
Цель исследования - анализ современных научных данных, посвященных молекулярным механизмам системы CRISPR-Сas9 в редактировании генов, преимуществам и недостаткам в исследованиях рака и разработке новых методов лечения. Материал и методы. Комплексный электронный поиск соответствующих публикаций проведен в научных базах данных PubMed/MEDLINE, ScienceDirect, Wiley и Google Scholar за период с 2014 по 2024 г. Поиск был адаптирован к конкретным требованиям каждой базы данных на основе следующих ключевых слов: CRISPR-Cas9, sgРНК, редактирование генома, иммунотерапия рака, CAR-T. В результате поиска было найдено 487 публикаций по интересующей теме, из которых 54 были использованы для написания литературного обзора. Кроме того, в статье дискретно подчеркиваются важность и проблемы CRISPR-Cas9 при производстве генно-инженерных Т-клеток для их потенциального использования при лечении определенных типов рака.
Crispr-cas9, sgрнк, днк, редактирование генома, рак, cart
Короткий адрес: https://sciup.org/140307082
IDR: 140307082 | DOI: 10.21294/1814-4861-2024-23-4-152-161
Список литературы Генная инженерия в онкологии, основанная на технологии CRISPR-CAS9
- Global cancer burden growing, amidst mounting need for services. Saudi Med J. 2024; 45(3): 326-7.
- Westermann L., Neubauer B., Köttgen M. Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflugers Arch. 2021; 473(1): 1-2. https://doi.org/10.1007/s00424-020-02497-9.
- Alseth E.O., Pursey E., Luján A.M., McLeod I., Rollie C., Westra E.R. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature. 2019; 574(7779): 549-52. https://doi.org/10.1038/s41586-019-1662-9.
- Afolabi L.O., Afolabi M.O., Sani M.M., Okunowo W.O., Yan D., Chen L., Zhang Y., Wan X. Exploiting the CRISPR-Cas9 gene-editing system for human cancers and immunotherapy. Clin Transl Immunology. 2021; 10(6). https://doi.org/10.1002/cti2.1286.
- Sadeqi Nezhad M., Yazdanifar M., Abdollahpour-Alitappeh M., Sattari A., Seifalian A., Bagheri N. Strengthening the CAR-T cell therapeutic application using CRISPR/Cas9 technology. Biotechnol Bioeng. 2021; 118(10): 3691-705. https://doi.org/10.1002/bit.27882.
- Xu Y., Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J. 2020; 18: 2401-15. https://doi.org/10.1016/j.csbj.2020.08.031.
- Zhang D., Hussain A., Manghwar H., Xie K., Xie S., Zhao S., Larkin R.M., Qing P., Jin S., Ding F. Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective. Plant Biotechnol J. 2020; 18(8): 1651-69. https://doi.org/10.1111/pbi.13383.
- Naeem M., Majeed S., Hoque M.Z., Ahmad I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells. 2020; 9(7): 1608. https://doi.org/10.3390/cells9071608.
- Manghwar H., Li B., Ding X., Hussain A., Lindsey K., Zhang X., Jin S. CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for sgRNA Design, Off-Target Evaluation, and Strategies to Mitigate Off-Target Effects. Adv Sci (Weinh). 2020; 7(6). https://doi.org/10.1002/advs.201902312.
- Javed M.R., Sadaf M., Ahmed T., Jamil A., Nawaz M., Abbas H., Ijaz A. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms. Curr Microbiol. 2018; 75(12): 1675-83. https://doi.org/10.1007/s00284-018-1547-4.
- Batool A., Malik F., Andrabi K.I. Expansion of the CRISPR/Cas Genome-Sculpting Toolbox: Innovations, Applications and Challenges. Mol Diagn Ther. 2021; 25(1): 41-57. https://doi.org/10.1007/s40291-020-00500-8.
- Singh V., Gohil N., Ramírez García R., Braddick D., Fofié C.K. Recent Advances in CRISPR-Cas9 Genome Editing Technology for Biological and Biomedical Investigations. J Cell Biochem. 2018; 119(1): 81-94. https://doi.org/10.1002/jcb.26165.
- Cao J., Wu L., Zhang S.M., Lu M., Cheung W.K., Cai W., Gale M., Xu Q., Yan Q. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 2016; 44(19). https://doi.org/10.1093/nar/gkw660.
- Morshedzadeh F., Ghanei M., Lotfi M., Ghasemi M., Ahmadi M., Najari-Hanjani P., Sharif S., Mozaffari-Jovin S., Peymani M., Abbaszadegan M.R. An Update on the Application of CRISPR Technology in Clinical Practice. Mol Biotechnol. 2024; 66(2): 179-97. https://doi.org/10.1007/s12033-023-00724-z.
- Ray U., Raghavan S.C. Modulation of DNA double-strand break repair as a strategy to improve precise genome editing. Oncogene. 2020; 39(41): 6393-405. https://doi.org/10.1038/s41388-020-01445-2.
- Miyaoka Y., Berman J.R., Cooper S.B., Mayerl S.J., Chan A.H., Zhang B., Karlin-Neumann G.A., Conklin B.R. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep. 2016; 6. https://doi.org/10.1038/srep23549.
- Gruzdev A., Scott G.J., Hagler T.B., Ray M.K. CRISPR/Cas9- Assisted Genome Editing in Murine Embryonic Stem Cells. Methods Mol Biol. 2019; 1960: 1-21. https://doi.org/10.1007/978-1-4939-9167-9_1.
- Chen X., Zhang T., Su W., Dou Z., Zhao D., Jin X., Lei H., Wang J., Xie X., Cheng B., Li Q., Zhang H., Di C. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis. 2022; 13(11): 974. https://doi.org/10.1038/s41419-022-05408-1.
- Prior I.A., Hood F.E., Hartley J.L. The Frequency of Ras Mutations in Cancer. Cancer Res. 2020; 80(14): 2969-74. https://doi.org/10.1158/0008-5472.CAN-19-3682.
- Nakajima E.C., Drezner N., Li X., Mishra-Kalyani P.S., Liu Y., Zhao H., Bi Y., Liu J., Rahman A., Wearne E., Ojofeitimi I., Hotaki L.T., Spillman D., Pazdur R., Beaver J.A., Singh H. FDA Approval Summary: Sotorasib for KRAS G12C-Mutated Metastatic NSCLC. Clin Cancer Res. 2022; 28(8): 1482-6. https://doi.org/10.1158/1078-0432.CCR-21-3074.
- Lakshmanan V.K., Jindal S., Packirisamy G., Ojha S., Lian S., Kaushik A., Alzarooni A.I.M.A., Metwally Y.A.F., Thyagarajan S.P., Do Jung Y., Chouaib S. Nanomedicine-based cancer immunotherapy: recent trends and future perspectives. Cancer Gene Ther. 2021; 28(9): 911-23. https://doi.org/10.1038/s41417-021-00299-4.
- Behan F.M., Iorio F., Picco G., Gonçalves E., Beaver C.M., Migliardi G., Santos R., Rao Y., Sassi F., Pinnelli M., Ansari R., Harper S., Jackson D.A., McRae R., Pooley R., Wilkinson P., van der Meer D., Dow D., Buser-Doepner C., Bertotti A., Trusolino L., Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 2019; 568(7753): 511-6. https://doi.org/10.1038/s41586-019-1103-9.
- Kasap C., Elemento O., Kapoor T.M. DrugTargetSeqR: a genomics- and CRISPR-Cas9-based method to analyze drug targets. Nat Chem Biol. 2014; 10(8): 626-8. https://doi.org/10.1038/nchembio.1551.
- Neggers J.E., Vercruysse T., Jacquemyn M., Vanstreels E., Baloglu E., Shacham S., Crochiere M., Landesman Y., Daelemans D. Identifying drugtarget selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing. Chem Biol. 2015; 22(1): 107-16. https://doi.org/10.1016/j.chembiol.2014.11.015.
- Yang X., Zhang B. A review on CRISPR/Cas: a versatile tool for cancer screening, diagnosis, and clinic treatment. Funct Integr Genomics. 2023; 23(2): 182. https://doi.org/10.1007/s10142-023-01117-w.
- Gong X., Du J., Peng R.W., Chen C., Yang Z. CRISPRing KRAS: A Winding Road with a Bright Future in Basic and Translational Cancer Research. Cancers (Basel). 2024; 16(2): 460. https://doi.org/10.3390/cancers16020460.
- Huang D., Miller M., Ashok B., Jain S., Peppas N.A. CRISPR/ Cas systems to overcome challenges in developing the next generation of T cells for cancer therapy. Adv Drug Deliv Rev. 2020; 158: 17-35. https://doi.org/10.1016/j.addr.2020.07.015.
- Stefanoudakis D., Kathuria-Prakash N., Sun A.W., Abel M., Drolen C.E., Ashbaugh C., Zhang S., Hui G., Tabatabaei Y.A., Zektser Y., Lopez L.P., Pantuck A., Drakaki A. The Potential Revolution of Cancer Treatment with CRISPR Technology. Cancers (Basel). 2023; 15(6): 1813. https://doi.org/10.3390/cancers15061813.
- Yang H., Bailey P., Pilarsky C. CRISPR Cas9 in Pancreatic Cancer Research. Front Cell Dev Biol. 2019; 7: 239. https://doi.org/10.3389/ fcell.2019.00239.
- Atsavapranee E.S., Billingsley M.M., Mitchell M.J. Delivery technologies for T cell gene editing: Applications in cancer immunotherapy. EBioMedicine. 2021; 67. https://doi.org/10.1016/j.ebiom.2021.103354.
- Met Ö., Jensen K.M., Chamberlain C.A., Donia M., Svane I.M. Principles of adoptive T cell therapy in cancer. Semin Immunopathol. 2019; 41(1): 49-58. https://doi.org/10.1007/s00281-018-0703-z.
- Long K.B., Young R.M., Boesteanu A.C., Davis M.M., Melenhorst J.J., Lacey S.F., DeGaramo D.A., Levine B.L., Fraietta J.A. CAR T Cell Therapy of Non-hematopoietic Malignancies: Detours on the Road to Clinical Success. Front Immunol. 2018; 9. https://doi.org/10.3389/fimmu.2018.02740.
- Ottaviano G., Georgiadis C., Gkazi S.A., Syed F., Zhan H., Etuk A., Preece R., Chu J., Kubat A., Adams S., Veys P., Vora A., Rao K., Qasim W.; TT52 CRISPR-CAR group. Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia. Sci Transl Med. 2022; 14(668). https://doi.org/10.1126/scitranslmed.abq3010.
- Wang Z., Li N., Feng K., Chen M., Zhang Y., Liu Y., Yang Q., Nie J., Tang N., Zhang X., Cheng C., Shen L., He J., Ye X., Cao W., Wang H., Han W. Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors. Cell Mol Immunol. 2021; 18(9): 2188-98. https://doi.org/10.1038/s41423-021-00749-x.
- Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M., Gao X., Rees H.A., Lin Z., Liu D.R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018; 556: 57-63. https://doi.org/10.1038/nature26155.
- Luther D.C., Lee Y.W., Nagaraj H., Scaletti F., Rotello V.M. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges. Expert Opin Drug Deliv. 2018; 15(9): 905-13. https://doi.org/10.1080/17425247.2018.1517746.
- Kornete M., Marone R., Jeker L.T. Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells. J Immunol. 2018; 200(7): 2489-2501. https://doi.org/10.4049/jimmunol.1701121.
- Fujihara Y., Ikawa M. CRISPR/Cas9-based genome editing in mice by single plasmid injection. Methods Enzymol. 2014; 546: 319-36. https://doi.org/10.1016/B978-0-12-801185-0.00015-5.
- Xu X., Wan T., Xin H., Li D., Pan H., Wu J., Ping Y. Delivery of CRISPR/Cas9 for therapeutic genome editing. J Gene Med. 2019; 21(7). https://doi.org/10.1002/jgm.3107.
- Givens B.E., Naguib Y.W., Geary S.M., Devor E.J., Salem A.K. Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics. AAPS J. 2018; 20(6): 108. https://doi.org/10.1208/s12248-018-0267-9.
- Seki A., Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018; 215(3): 985-97. https://doi.org/10.1084/jem.20171626.
- Kim S., Koo T., Jee H.G., Cho H.Y., Lee G., Lim D.G., Shin H.S., Kim J.S. CRISPR RNAs trigger innate immune responses in human cells. Genome Res. 2018; 28(3): 367-73. https://doi.org/10.1101/gr.231936.117.
- Wei T., Cheng Q., Min Y.L., Olson E.N., Siegwart D.J. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020; 11(1): 3232. https://doi.org/10.1038/s41467-020-17029-3.
- Lino C.A., Harper J.C., Carney J.P., Timlin J.A. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018; 25(1): 1234-57. https://doi.org/10.1080/10717544.2018.1474964.
- Townsend M.H., Bennion K., Robison R.A., O'Neill K.L. Paving the way towards universal treatment with allogenic T cells. Immunol Res. 2020; 68(1): 63-70. https://doi.org/10.1007/s12026-020-09119-7.
- Salas-Mckee J., Kong W., Gladney W.L., Jadlowsky J.K., Plesa G., Davis M.M., Fraietta J.A. CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy. Hum Vaccin Immunother. 2019; 15(5): 1126-32. https://doi.org/10.1080/21645515.2019.1571893.
- Stenger D., Stief T.A., Kaeuferle T., Willier S., Rataj F., Schober K., Vick B., Lotfi R., Wagner B., Grünewald T.G.P., Kobold S., Busch D.H., Jeremias I., Blaeschke F., Feuchtinger T. Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR. Blood. 2020; 136(12): 1407-18. https://doi.org/10.1182/blood.2020005185.
- Seliger B. Basis of PD1/PD-L1 Therapies. J Clin Med. 2019; 8(12): 2168. https://doi.org/10.3390/jcm8122168.
- Rupp L.J., Schumann K., Roybal K.T., Gate R.E., Ye C.J., Lim W.A., Marson A. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017; 7(1): 737. https://doi.org/10.1038/s41598-017-00462-8.
- Nakazawa T., Natsume A., Nishimura F., Morimoto T., Matsuda R., Nakamura M., Yamada S., Nakagawa I., Motoyama Y., Park Y.S., Tsujimura T., Wakabayashi T., Nakase H. Effect of CRISPR/Cas9-Mediated PD-1-Disrupted Primary Human Third-Generation CAR-T Cells Targeting EGFRvIII on In Vitro Human Glioblastoma Cell Growth. Cells. 2020; 9(4): 998. https://doi.org/10.3390/cells9040998.
- Hu W., Zi Z., Jin Y., Li G., Shao K., Cai Q., Ma X., Wei F. CRISPR/ Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immunother. 2019; 68(3): 365-77. https://doi.org/10.1007/s00262-018-2281-2.
- Choi B.D., Yu X., Castano A.P., Darr H., Henderson D.B., Bouffard A.A., Larson R.C., Scarfò I., Bailey S.R., Gerhard G.M., Frigault M.J., Leick M.B., Schmidts A., Sagert J.G., Curry W.T., Carter B.S., Maus M.V. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer. 2019; 7(1): 304. https://doi.org/10.1186/s40425-019-0806-7.
- Yazdanifar M., Zhou R., Mukherjee P. Emerging immunotherapeutics in adenocarcinomas: A focus on CAR-T cells. Curr Trends Immunol. 2016; 17: 95-115.
- Tang N., Cheng C., Zhang X., Qiao M., Li N., Mu W., Wei X.F., Han W., Wang H. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight. 2020; 5(4). https://doi.org/10.1172/jci.insight.133977.