Genome-wide analysis of BHLH and BZIP transcription factors and their temporal expression under abiotic stress conditions in groundnut (Arachis hypogaea L.)

Автор: Suchithra B., Shafia Hoor F., Nagesh Babu R.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.18, 2022 года.

Бесплатный доступ

Groundnut ( Arachis hypogaea L.), is an important subsistence oil yielding crop of the semi-arid tropics and often exposed to several environmental cues (high temperature, drought & heavy metal). Transcription factors can control the expression of many target genes through specific binding to the cis-acting elements in the promoters of the target genes. The basic leucine zipper (bZIP) and basic helix-loop-helix (bHLH) represents one of the largest as well as most diverse transcription factor (TFs) families. They are known to play role in both stress as well as in various plant developmental processes. In this study, a comprehensive phylogeny, chromosomal location, conserved motif identification and expression profiles under high temperature and drought stress. of bZIP and bhLH TF gene family was carried in groundnut. A total of 151 bZIP and 39 bHLH transcription factors have been identified from groundnut. Expression analysis during high temperature and heavy metal stress conditions. Gene expression studies revealed differential expressions of bZIP and bhLH TFs suggesting the possible role in various stress mitigation and can serve as a candidate genes for improving abiotic stress tolerance and can be helpful in enhancing the crop productivity under stress conditions.

Еще

Groundnut, bzip, bhlh, abiotic stress

Короткий адрес: https://sciup.org/143178338

IDR: 143178338

Список литературы Genome-wide analysis of BHLH and BZIP transcription factors and their temporal expression under abiotic stress conditions in groundnut (Arachis hypogaea L.)

  • Agati, G., Biricolti, S., Guidi, L., Ferrini, F., Fini, A., & Tattini, M. (2011). The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. Journal of plant physiology, 168(3), 204-212
  • Atchley, W. R., Terhalle, W., & Dress, A. (1999). Positional dependence, cliques, and predictive motifs in the bHLH protein domain. Journal of molecular evolution, 48(5), 501-516.
  • Dong, Y., Wang, C., Han, X., Tang, S., Liu, S ., Xia, X., & Yin, W. (2014). A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochemical and biophysical research communications, 450(1), 453-458.
  • Ferre-D'Amare, A. R., Pognonec, P., Roeder, R. G., & Burley, S. K. (1994). Structure and function of the b/HLH/Z domain of USF. The EMBO journal, 13(1), 180-189.
  • Goding, C. R. (2000). Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes & development, 14(14), 1712-1728.
  • Hall, T., Biosciences, I., & Carlsbad, C. (2011). BioEdit: an important software for molecular biology. GERF Bull Biosci, 2(1), 60-61.
  • Hu, W., Yang, H., Yan, Y., Wei, Y., Tie, W., Ding, Z., & Li, K. (2016). Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Scientific reports, 6(1), 1-12.
  • Kilian, J., Peschke, F., Berendzen, K. W., Harter, K., & Wanke, D. (2012). Prerequisites, performance and profits of transcriptional profiling the abiotic stress response. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2), 166-175.
  • Luo, X. P., Zhao, H. X., Xue, J., Li, C. L., Chen, H., Park, S. U., & Wu, Q. (2016). Cloning of two basic helix-loop-helix transcription factor genes from Tartary buckwheat (Fagopyrum tataricum) and their proteins: regulators of transcription in eucaryotic organisms. Molecular and cellular biology, 20(2), 429-440.
  • Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant physiology, 149(1), 88-95.
  • Rejeb, I. B., Pastor, V., & Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants, 3(4), 458-475.
  • Simionato, E., Ledent, V., Richards, G., Thomas-Chollier, M., Kerner, P., Coornaert, D..... & Vervoort, M. (2007). Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC evolutionary biology, 7(1), 1-18.
  • Song, X. M., Huang, Z. N., Duan, W. K., Ren, J., Liu, T. K., Li, Y., & Hou, X. L. (2014). Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis). Molecular genetics and genomics, 289(1), 77-91.
  • Sonnenfeld, M. J., Delvecchio, C., & Sun, X. (2005). Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor. Development genes and evolution, 215(5), 221-229.
  • Sun, X. H., Copeland, N. G., Jenkins, N. A., & Baltimore, D. (1991). Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Molecular and cellular biology, 11(11), 5603-5611.
  • Xu, P., Jiang, L., Wu, J., Li, W., Fan, S., & Zhang, S. (2014). Isolation and characterization of a pathogenesis-related protein 10 gene (GmPR10) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae. Molecular biology reports, 41(8), 4899-4909.
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: evolution, 33(7), 1870-1874. Ledent, V., & Vervoort, M. (2001). The basic helix-loop-754-770.
  • Lindemose, S., O'Shea, C., Jensen, M. K., & Skriver, K. expression under abiotic stress. Turkish Journal of Biology, 40(6), 1192-1201. Massari, M. E., & Murre, C. (2000). Helix-loop-helix
Еще
Статья научная