Genome wide identification and in-silico transcriptional and expression analysis specific protease against biotic stress in plant species

Автор: Dutta Sanjukta, Sharma Arti

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.18, 2022 года.

Бесплатный доступ

The post-translational modification involves protein degradation which helps to degrade the overexpressed proteins in plants. This includes the process of ubiquitination and deubiquitination where the targets attached with the substrates are cleaved and can play a major role in plant-pathogen interactions. By 26S/proteasome pathway, the pathogens are targeted for the defense of the plant and thus the proteases involved in the process are taken for the study. The study involves the digital expression of the genes which helps to infer the gene expression among various important plant tissues which helps to manifest the responses against the pathogenic stresses. Ubiquitin-specific protease are seen to expressed maximum among the plants species taken for study and thus it can be generalized that these protease genes can help to combat against the biotic stresses in certain tissue specific regions as their own immune response.

Еще

Protease, biotic stress, deubiquitin enzymes, ubiquitin/26s proteasome

Короткий адрес: https://sciup.org/143178334

IDR: 143178334

Список литературы Genome wide identification and in-silico transcriptional and expression analysis specific protease against biotic stress in plant species

  • Binder, B., Walker, J., Gagne, J..... Bleeker, A. A. (2007). The Arabidopsis EIN3 Binding F-Box Proteins EBF1 and EBF2 have distict but overlapping roles in ethelene signaling . The Plant Cell,19: 509-523.
  • Colwell, R.R. (2000). Viable but nonculturable bacteria: A survival strategy. J. Infect. Chemother 6: 121-125.
  • Dangl J, J. J. (2001). Plant pathogens and integrated defence responses to infection. Nature 411: 826833.
  • Davis, M. I., & Simeonov, A. (2015). Ubiquitin specific proteases as druggable targets. Drug Target Rev., 60-64.
  • Devoto, A., Nieto-Rostro, M., Xie, D., Ellis, ... J.G. (2002). COI1 links jasmonate signalling and fertility to the SCF ubiquitin ligase complex in Arabidopsis. The Plant Journal,32: 457-466. Diaz, I. (2018). Plant defense genes aginst biotic stresses. International Journal Of Molecular Sciences. 19(8), 2446
  • Dielen, A.-S., Badaoui, S., Candresse, T., & GermanRetana, S. (2010). The ubiquitin/26S proteasome system in plant pathogen interaction: a never ending hide and seek game. Molecular Plant Pathology, 293-308.
  • Doherty, F.J., Dawson S., & Mayer, R.J. (2002). The ubiquitin proteasome pathway of intracellular proteolysis. Essays Biochem, 51-63.
  • Fei Zhangjun; Xuemei Tang; Rob M. Alba; Joseph A. White; Catherine M. Ronning; Gregory B. Martin. (2004). Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. The Plant Journal 40, 47-59.
  • Figaj D.; Ambroziak P.; Przepiora T. and Skorko-Glonek J.. (2019). The role of protease in virulence of plant pathogenic bacteria. International Journal of Molecular Sciences, 20: 672.
  • Grudkowska, M., & Zagdanska, B. (2004). Multifunctional role of plant cystine proteinase. Acta Biochemica Polonica 51: 609-624.
  • Hou S, Jamieson P. and He Ping. (2018). The cloak, dagger and sheild: protease in plant-pathogen interactions. Biochemical Journal 475: 2491-2509.
  • Isono E., Nagel. M.-K. (2014). Deubiquitylating enzymes and their emerging role in plant biology. Front Plant Sci 5: 56.
  • Lu, D., Lin, W., Gao, X., Wu, S., Cheng, C., Avila, J. ... & Shan, L. (2011). Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science, 332(6036): 1439-1442.
  • Moon J.; Parry G.; Mark E. (2004). The Ubiquitin-Proteasome pathway and plant development. The Plant Cell, 16: 3181-3195.
  • Pickart. C.M.; (2003). Mechanisms underlying ubiquitination. Annu Rev Biochem 70: 503-533.
  • Rawlings, N.D.; Barrett, A.J.; Thomas, P.D; Huang, X.; Bateman, A.; FInn, R.D. (2018). The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acid Res., 46: D624-D632.
  • Reyes-Turcu, F. E., Ventii, K. H., & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual review of biochemistry, 78: 363-397.
  • Thines, B., Katsir, L., Melotto, M.....J. (2007). JAZ repressor proteins are targets of the SCF complex during jasmonate signalling. Nature, 661-665.
  • Van der Hoorn; R.A.L. (2008). Plant proteases: From phenotypes to molecular mechanisms. Annu.Rev. Plant Biol., 191-223.
  • Vorholt, J.A. (2012). Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10: 828-840.
  • Yaeno, Iba, T. a., & K. (2008). BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000. Plant Physiology 148: 1032-1041.
  • Zhou, H., Zhao, J., Cai, J., & Patil, S. B. (2017). Ubiquitin-specific protease function in plant development and stress responses. Plant Mol Bio 94: 565-576.
Еще
Статья научная