Гены-кандидаты, перспективные для маркерной селекции объектов аквакультуры (обзор)
Автор: Писаренко Н.Б.
Журнал: Сельскохозяйственная биология @agrobiology
Рубрика: Обзоры, проблемы
Статья в выпуске: 6 т.58, 2023 года.
Бесплатный доступ
Современная аквакультура относится к стремительно развивающимся отраслям мирового производства, дает полноценную пищевую продукцию, которая служит источником животного белка и содержит незаменимые аминокислоты, жиры, витамины, минеральные вещества и ферменты. Это направление важно для решения проблемы продовольственной безопасности. В России товарное рыбоводство по объему пока что существенно уступает промышленному. Перспективный подход в научном сопровождении товарной аквакультуры - поиск полиморфных локусов в генах-кандидатах и выявление достоверных ассоциаций между различными генотипами и показателями продуктивности для последующей маркерной селекции (marker-assisted selection, MAS) объектов товарной аквакультуры. Целью представленного обзора стало обобщение и анализ публикаций, касающихся однонуклеотидных замен (single nucleotide polymorphism, SNP) в генах, влияющих на размер и показатели массы у рыб. Масса тела относится к экономически важным признакам, по которым ведется отбор в рыбоводческих хозяйствах. Она зависит от роста скелетных мышц, поэтому гены, влияющие на рост и развитие мышечной ткани, рассматриваются в качестве потенциальных генов-кандидатов. К наиболее важным из них относятся гены миостатина ( MSTN ), инсулиноподобных факторов роста I и II ( IGF-I, IGF - II ), гормона роста ( GH ) и рецептора гормона роста ( GHR ) (X.Y. Dai с соавт., 2015; D.L. Li с соавт., 2014). При оценке влияния генов-кандидатов на определенный признак сначала исследуются полиморфизмы в этих генах, а затем проводится статистическая оценка взаимосвязи между специфическими аллелями/генотипами и фенотипической экспрессией интересующего признака. Если обнаружены достоверные ассоциации, это считается доказательством того, что ген либо непосредственно участвует в генетическом контроле признака, либо функциональный полиморфизм расположен достаточно близко к маркеру и два локуса находятся в неравновесном сцеплении (M. Lynch и B. Walsh, 1997; D.L. Yowe и R.J. Epping, 1995). Миостатин играет важную роль в ингибировании роста и развития мышц. У большинства млекопитающих потеря или инактивация миостатина ( MSTN -/-) обусловливает увеличение размера и числа миоволокон, что приводит к наращиванию мышечной массы (A. Clop с соавт., 2006; L. Grobet с соавт., 1997; D.S. Mosher с соавт., 2007; S. Rao с соавт., 2016). Гены инсулиноподобных факторов роста I и II кодируют соответствующие полипептидные гормоны, которые имеют молекулярную структуру, сходную с проинсулином, и играют важную роль в регуляции процессов роста, развития и дифференцировки клеток и тканей у позвоночных (J.I. Jones с соавт., 1995; M. Codina с соавт., 2008). Инсулиноподобные факторы роста I и II - важнейшие эндокринные посредники действия соматотропного гормона, они синтезируются в печени и скелетных мышцах, а также в других тканях (W.J. Tao и E.G. Boulding, 2003; K.M. Reindl с соавт., 2011). Гормон роста, или соматотропин, - это полипептидный гормон, который синтезируется в соматотропных клетках гипофиза и играет важную роль в регуляции соматического роста рыб (J.I. Johnsson и B.T. Björnsson, 1994; B. Cavari с соавт., 1993). Рецептор гормона роста представляет собой трансмембранный белок, который принадлежит к суперсемейству цитокиновых рецепторов класса 1 и служит важнейшим регулятором роста и метаболизма (T. Zhu с соавт., 2001). GHR как рецептор опосредует биологическое действие гормона роста на клетки-мишени благодаря передаче стимулирующего сигнала через клеточную мембрану с последующей индукцией транскрипции многих генов, включая IGF-I (Y. Kobayashi с соавт., 1999). SNPs в генах MSTN, IGF-I, IGF-II, GH, RGH могут влиять на размеры и показатели массы у разных видов рыб и использоваться как вспомогательный инструмент в программах разведения (D. Gencheva и S. Stoyanova, 2018; C. De-Santis и D.R. Jerry, 2007; Y. Sun с соавт., 2012). Рассмотренные в обзоре функциональные характеристики и ассоциации показателей роста и развития с генетическими полиморфизмами в генах миостатина, инсулиноподобных факторов роста I и II, гормона роста и рецептора гормона роста позволяют рекомендовать их в качестве наиболее перспективных генов-кандидатов для поиска полиморфных локусов с последующей статистической оценкой связей генотип-признак. Результаты достоверных ассоциаций могут использоваться в маркерной селекции ремонтно-маточных стад для повышения эффективности товарной аквакультуры.
Гены-кандидаты, аквакультура, масса тела, полиморфный локус, маркерная селекция, миостатин, mstn, инсулиноподобные факторы роста, igf-i, igf-ii, гормон роста, gh, рецептор гормона роста, rgh
Короткий адрес: https://sciup.org/142240689
IDR: 142240689 | DOI: 10.15389/agrobiology.2023.6.953rus
Список литературы Гены-кандидаты, перспективные для маркерной селекции объектов аквакультуры (обзор)
- ФАО. Cостояние мирового рыболовства и аквакультуры—2022. На пути к “голубой” трансформации. Рим, 2022 (doi: 10.4060/cc0463ru).
- Федеральное агентство по рыболовству. Режим доступа: https://fish.gov.ru/. Без даты.
- О развитии и поддержке аквакультуры (рыбоводства) в Российской Федерации /Под ред. Е.С. Кац, А.А. Нарышкина. М., 2020.
- Богачев А.И. Значение рыбохозяйственного комплекса в обеспечении продовольственной безопасности России. Вестник Марийского государственного университета, 2018, 4(1): 47-54.
- Аboukila R.S., Hemeda S.E., El Nahas А.F., El Naby W.S. Molecular characterization of GHR1 gene and expression analysis of some growth-related genes in Oreochromis niloticus. Advances in Animal and Veterinary Sciences, 2021, 9(7): 1025-1033 (doi: 10.17582/journal.aavs/2021/9.7.1025.1033).
- Dai X.Y., Zhang W., Zhuo Z.J., He J.Y., Yin Z. Neuroendocrine regulation of somatic growth in fishes. Science China Life Sciences, 2015, 58 (2): 137-147 (doi: 10.1007/s11427-015-4805-8).
- Li D.L., Lou Q.Y., Zhai G., Peng X.Y., Cheng X.X., Dai X.Y., Zhuo Z.J., Shang G.H., Jin X., Chen X.W., Han D., Yin Z. Hyperplasia and cellularity changes in IGF-1-overexpressing skeletal muscle of crucian carp. Endocrinology, 2014, 155(6): 2199-2212 (doi: 10.1210/en.2013-1938).
- Gencheva D., Stoyanova S. Polymorphisms of the candidate genes associated with the growth traits in common carp (Cyprinus carpio L.). Agricultural Sciences, 2018, 10(23): 27-32 (doi: 10.22620/agrisci.2018.23.004).
- De-Santis C., Jerry D.R. Candidate growth genes in finfish — where should we be looking? Aquaculture, 2007, 272: 22-38 (doi: 10.1016/j.aquaculture.2007.08.036).
- Seiliez I., Sabin N., Gabillard J. Myostatin inhibits proliferation but not differentiation of trout myoblasts. Molecular and Cellular Endocrinology, 2012, 351(2): 220-226 (doi: 10.1016/j.mce.2011.12.011).
- Fuentes E.N., Valdés J.A., Molina F., Björnsson B.T. Regulation of skeletal muscle growth in fish by the growth hormone Insulin-like growth factor system. General and Comparative Endocrinology, 2013, 192: 136-148 (doi: 10.1016/j.ygcen.2013.06.009).
- Tang Y.K., Li J.L., Yu J.H., Chen X.F., Li H.X. Genetic structure of MSTN and association between its polymorphisms and growth traits in genetically improved farmed tilapia (GIFT). Jour-nal of Fishery Sciences of China, 2010, 17(1): 44-51.
- Lynch M., Walsh B. Genetics and analysis of quantitative traits. Sinauer Associates, Inc., MA, Sunderland, 1998.
- Yowe D.L., Epping R.J. Cloning of the barramundi growth hormone-encoding gene: a compar-ative analysis of higher and lower vertebrate GH genes. Gene, 1995, 162: 255-259 (doi: 10.1016/0378-1119(95)92858-5).
- McPherron A.C., Lawler A.M., Lee S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997, 387(6628): 83-90 (doi: 10.1038/387083a0).
- Thomas M., Langley B., Berry C., Sharma M., Kirk S., Bass J., Kambadur R. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem., 2000, 275(51): 40235-40243 (doi: 10.1074/jbc.M004356200).
- Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibe B., Bouix J., Caiment F., Elsen M., Eychenne F., Larzul C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C., Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet., 2006, 38(7): 813-818 (doi: 10.1038/ng1810).
- Grobet L., Martin L.J., Poncelet D., Pirottin D., Brouwers B., Riquet J., Schoeberlein A., Dun-ner S., Menissier F., Massabanda J., Fries R., Hanset R., Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71-74 (doi: 10.1038/ng0997-71).
- Mosher D.S., Quignon P., Bustamante C.D., Sutter N.B., Mellersh C.S., Parker H.G., Os-trander E.A. A mutation in the myostatin gene increases muscle mass and enhances racing perfor-mance in heterozygote dogs. PLoS Genetics, 2007, 3(5): 779-786 (doi: 10.1371/journal.pgen.0030079).
- Rao S., Fujimura T., Matsunari H., Sakuma T., Nakano K., Watanabe M., Asano Y., Kita-gawa E., Yamamoto T., Nagashima H. Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Molecular Reproduction and Development, 2016, 83(1): 61-70 (doi: 10.1002/mrd.22591).
- Østbye T.-K., Galloway T.F., Nielsen C., Gabestad I., Bardal T., Andersen O. The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. European Journal of Biochemistry, 2001, 268(20): 5249-5257 (doi: 10.1046/j.0014-2956.2001.02456.x).
- Rodgers B.D., Weber G.M., Sullivan C.V., Levine M.A. Isolation and characterization of myo-statin complementary deoxyribonucleic acid clones from two commercially important fish: Oreo-chromis mossambicus and Morone chrysops. Endocrinology, 2001, 142(4): 1412-1418 (doi: 10.1210/endo.142.4.8097).
- Xu C., Wu G., Zohar Y., Du S.J. Analysis of myostatin gene structure, expression and function in zebrafish. Journal of Experimental Biology, 2003, 206: 4067-4079 (doi: 10.1242/jeb.00635).
- Ye H.Q., Chen S.L., Sha Z.X., Liu Y. Molecular cloning and expression analysis of the myo-statin gene in sea perch (Lateolabrax japonicus). Marine Biotechnology, 2007, 9: 262-272 (doi: 10.1007/s10126-006-6093-6).
- Maccatrozzo L., Bargelloni L., Radaelli G., Mascarello F., Patarnello T. Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): sequence, genomic structure, and ex-pression pattern. Marine Biotechnology, 2001, 3: 224-230 (doi: 10.1007/s101260000064).
- Elbialy Z.I., El-Nahas A.F., Elkatatny N.A., Ammar A.Y. Quantitative expression analysis of myostatin gene in Nile tilapia (Oreochromis niloticus) tissues in adult stage. Alexandria Journal of Veterinary Sciences, 2016, 51(1): 170-173 (doi: 10.5455/ajvs.237221).
- Kocabas A.M., Kucuktas H., Dunham R.A., Liu Z. Molecular characterization and differential expression of the myostatin gene in channel catfish (Ictalurus punctatus). Biochimica et Biophysica Acta, 2002, 1575(1-3): 99-107 (doi: 10.1016/s0167-4781(02)00289-0).
- Garikipati D., Gahr S.A., Rodgers B.D. Identification, characterization and quantitative expres-sion analysis of rainbow trout myostatin-1a and myostatin-1b genes. Journal of Endocrinology, 2006, 190(3): 879-888 (doi: 10.1677/joe.1.06866).
- Roberts S.B., McCauley L.A.R., Devlin R.H., Goetz F.W. Transgenic salmon overexpressing growth hormone exhibit decreased myostatin transcript and protein expression. The Journal of Experimental Biology, 2004, 207(21): 3741-3748 (doi: 10.1242/jeb.01210).
- Zhong Q.W., Zhang Q.Q., Chen Y.J., Sun Y.Y., Qi J., Wang Z.G., Li S., Li C., Lan X. The isolation and characterization of myostatin gene in Japanese flounder (Paralichthys olivaceus): ubiq-uitous tissue expression and developmental specific regulation. Aquaculture, 2008, 280: 247-255.
- Østbye T.-K., Wetten O. F., Tooming-Klunderud A., Jakobsen K.S., Yafe A., Etzioni S., Moen T., Andersen Ø. Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): Evidence for different selective pressure on teleost MSTN-1 and -2. Gene, 2007, 403(1-2): 159-169 (doi: 10.1016/j.gene.2007.08.008).
- Wang C., Chen Y.-L., Bian W.-P., Xie S.-L., Qi G.-L., Liu L., Strauss P.R., Zou J.-X., Pei D.-S. Deletion of mstna and mstnb impairs the immune system and affects growth performance in zebrafish. Fish and Shellfish Immunology, 2018, 72: 572-580 (doi: 10.1016/j.fsi.2017.11.040).
- Chiang Y.-A., Kinoshita M., Maekawa S., Kulkarni A., Lo C.-F., Yoshiura Y., Wang H.-C., Aoki T., TALENs-mediated gene disruption of myostatin produces a larger phenotype of medaka with an apparently compromised immune system. Fish Shellfish Immunology, 2016, 48: 212-220 (doi: 10.1016/j.fsi.2015.11.016).
- Radaelli G., Rowlerson A., Mascarello F., Patruno M., Funkenstein B. Myostatin precursor is present in several tissues in teleost fish: a comparative immunolocalization study. Cell and Tissue Research, 2003, 311(2): 239-250 (doi: 10.1007/s00441-002-0668-y).
- Roberts S.B., Goetz F.W. Differential skeletal muscle expression of myostatin across teleost spe-cies, and the isolation of multiple isoforms. FEBS Lett., 2001, 491(3): 212-216 (doi: 10.1016/s0014-5793(01)02196-2).
- Yu J.H., Li H.X., Tang Y.K., Li J.L., Dong Z.J. Isolation and expression of Myostatin (MSTN) genes, and their polymorphism correlations with body form and average daily gain in Cyprinus carpio var. Journal of Agricultural Biotechnology, 2010, 18: 1062-1072.
- Liu L.S., Yu X.M., Tong J.G. Molecular characterization of myostatin (MSTN) gene and asso-ciation analysis with growth traits in the bighead carp (Aristichthys nobilis). Molecular Biology Reports, 2012, 39(9): 9211-9221 (doi: 10.1007/s11033-012-1794-6).
- Stinckens A., Georges M., Buys N. Mutations in the myostatin gene leading to hypermuscularity in mammals: indications for a similar mechanism in fish? Animal Genetics, 2010, 42(3): 229-234 (doi: 10.1111/j.1365-2052.2010.02144.x).
- Kerr T., Roalson E.H., Rodgers B.D. Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evolution & Development, 2005, 7(5): 390-400 (doi: 10.1111/j.1525-142X.2005.05044.x).
- Rodgers B.D., Garikipati D.K. Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocrine Reviews, 2008, 29(5): 513-534 (doi: 10.1210/er.2008-0003).
- Jaillon O., Aury J.M., Brunet F., Petit J.L., Stange-Thomann N., Mauceli E., Bouneau L., Fischer C., Ozouf-Costaz C., Bernot A. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature, 2004, 431: 946-957 (doi: 10.1038/nature03025).
- Li H., Fan J., Liu S., Yang Q., Mu G., He C. Characterization of a myostatin gene (MSTN1) from spotted halibut (Verasper variegatus) and association between its promoter polymorphism and indi-vidual growth performance. Comparative Biochemistry and Physiology, 2012, 161(4): 315-322 (doi: 10.1016/j.cbpb.2011.12.008).
- Elkatatny N.A., Elbialy Z.I., El-Nahas A.F., Mahmoud S. Characterization of myostatin gene in Nile tilapia (Oreochromis niloticus), the possible association of BsmI-exon 2 polymorphism with its growth. American Journal of Life Sciences, 2016, 4(3): 82-86 (doi: 10.11648/j.ajls.20160403.13).
- Sun Y., Yu X., Tong J. Polymorphisms in myostatin gene and associations with growth traits in the common carp (Cyprinus carpio L.). International Journal of Molecular Sciences, 2012, 13(11): 14956-14961 (doi: 10.3390/ijms131114956).
- Yu J., Li H., Tang Y., Li J., Dong Z. Isolation and expression of myostatin (MSTN) genes, and their polymorphism correlations with body form and average daily gain in Cyprinus carpio var. jian. Journal of Agricultural Biotechnology, 2010, 18(6): 1062-1072.
- Al-Khshali M.S., Saleh N.A. Relationship of myostatin gene polymorphism with some growth traits of Common carp Cyprinus carpio L. Iraqi Journal of Agricultural Sciences, 2020, 51(1): 317-322 (doi: 10.36103/ijas.v51i1.930).
- Cheng L., Sun Y.H. Polymorphisms in a myostatin gene and associations with growth in a hybrid of Culter alburnus and Ancherythroculter nigrocauda. Genetics and Molecular Research, 2015, 14(2): 5615-5620 (doi: 10.4238/2015.may.25.13).
- Peñaloza C., Hamilton A., Guy D., Bishop S., Houston R. A SNP in the 5′ flanking region of the myostatin-1b gene is associated with harvest traits in Atlantic salmon (Salmo salar). BMC Genetics, 2013, 14(1): 112 (doi: 10.1186/1471-2156-14-112).
- Nazari S., Jafari V., Pourkazemi M., Miandare H.K., Abdolhay H.A. Association between myo-statin gene (MSTN-1) polymorphism and growth traits in domesticated rainbow trout (Oncorhyn-chus mykiss). Agri Gene, 2016, 1(4): 109-115 (doi: 10.1016/j.aggene.2016.08.003).
- Liu L., Yu X., Tong J. Molecular characterization of myostatin (MSTN) gene and association analysis with growth traits in the bighead carp (Aristichthys nobilis). Molecular Biology Reports, 2012, 39(9): 9211-9221 (doi: 10.1007/s11033-012-1794-6).
- Sun Y., Li Q., Wang G. Polymorphisms in the Myostatin-1 gene and their association with growth traits in Ancherythroculter nigrocauda. Chinese Journal of Oceanology and Limnology, 2017, 35(3): 597-602 (doi: 10.1007/s00343-017-5317-0). 52. Clemmons D.R. Use of mutagenesis to probe IGF-binding protein structure/function relation-ships. Endocr. Rev., 2001, 22(6): 800-817 (doi: 10.1210/edrv.22.6.0449).
- Chandhini S., Trumboo B., Jose S., Varghese T., Rajesh M., Kumar V. Insulin-like growth factor signalling and its significance as a biomarker in fish and shellfish research. Fish Physiology and Biochemistry, 2021, 47(4): 1011-1031 (doi: 10.1007/s10695-021-00961-6).
- Chu M.X., Jia Y., Wu Z., Huan H., Guo X., Yin S., Zhang K. Genome-wide characterization of three IGFs in hybrid yellow catfish (Pseudobagrus fulvidraco ½ Pseudobagrus vachellii ♂) and the association of IGF2 allelic variants with growth traits. Aquac. Rep., 2022, 26: 101315 (doi: 10.1016/j.aqrep.2022.101315).
- Jones J.I., Clemmons D.R. Insulin-like growth factors and their binding proteins: biological ac-tions. Endocrine Reviews, 1995, 16(1): 3-34 (doi: 10.1210/edrv-16-1-3).
- Codina M., Daniel G., Joan S., Núria M., Chistyakova O., Navarro I., Gutiérreza J. Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3K/Akt and MAPK signaling pathways. General and Comparative Endocrinology, 2008, 157(2): 116-124 (doi: 10.1016/j.ygcen.2008.04.009).
- Tao W.J., Boulding E.G. Associations between single nucleotide polymorphisms in candidate genes and growth rate in Arctic charr (Salvelinus alpinus L.). Heredity, 2003, 91(1): 60-69 (doi: 10.1038/sj.hdy.6800281).
- Reindl K.M., Kittilson J.D., Bergan H.E., Sheridan M.A. Growth hormone-stimulated insulin-like growth factor-1 expression in rainbow trout (Oncorhynchus mykiss) hepatocytes is mediated by ERK, PI3K-AKT and JAK-STAT. American Journal of Physiology — Regulatory Integrative and Comparative Physiology, 2011, 301(1): R236-R243 (doi: 10.1152/ajpregu.00414.2010).
- Chen T.Т., Marsh A., Shamblott M., Chan K.-M., Tang Y.-L., Cheng C.M., Yang B.-Y. Struc-ture and evolution of fish growth hormone and insulin-like growth factor genes. Fish Physiology, 1994, XIII: 179-209 (doi: 10.1016/s1546-5098(08)60067-9).
- Morro B., Balseiro P., Albalat A., Pedrosa C., Mackenzie S., Nakamura S., Shimizu M., Nil-sen T.O., Sveier H., Ebbesson L.O., Handeland S.O. Effects of different photoperiod regimes on the smoltification and seawater adaptation of seawater-farmed rainbow trout (Oncorhynchus mykiss): insights from Na+,K+-ATPase activity and transcription of osmoregulation and growth regulation genes. Aquaculture, 2019, 507: 282-292 (doi: 10.1016/j.aquaculture.2019.04.039).
- Cui W., Takahashi E., Morro B., Balseiro P., Albalat A., Pedrosa C., Mackenzie S., Nilsen T.O., Sveier H., Ebbesson L.O. Changes in circulating insulin-like growth factor-1 and its binding proteins in yearling rainbow trout during spring under natural and manipulated photoperiods and their relationships with gill Na+,K+-ATPase and body size. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2022, 268: 111205 (doi: 10.1016/j.cbpa.2022.111205).
- Yan J.J., Lee Y.C., Tsou Y.L., Tseng Y.C., Hwang P.P. Insulin-like growth factor 1 triggers salt secretion machinery in fish under acute salinity stress. Journal of Endocrinology, 2020, 246(3): 277-288 (doi: 10.1530/joe-20-0053).
- Canosa L.F., Bertucci J.I. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Molecular and Cellular Endocrinology, 2020, 518: 111029 (doi: 10.1016/j.mce.2020.111029).
- Le Gac F., Loir M., Le Bail P.Y. Insulin-like growth factor I (IGF-I) mRNA and IGF-I receptor in trout testis and in isolated spermatogenic and Sertoli cells. Mol. Reprod. Dev., 1996, 44(1): 23-35 (doi: 10.1002/(SICI)1098-2795(199605)44:1<23::AID-MRD3-3.0.CO;2-V).
- Schmid A.C., Naf E., Kloas W., Reinecke М. Insulin-like growth factor-I and -II in the ovary of a bony fish, Oreochromis mossambicus, the tilapia: in situ hybridisation, immunohistochemical localisation, Northern blot and cDNA. Molecular and Cellular Endocrinology, 1999, 156(1-2): 141-149 (doi: 10.1016/s0303-7207(99)00131-8).
- Reinecke M. Insulin-like growth factors and fish reproduction. Biology of Reproduction, 2010, 82(4): 656-661 (doi: 10.1095/biolreprod.109.080093).
- Shved N., Baroiller J.F., Eppler E. Further insights into the insulin-like growth factor-I system of bony fish pituitary with special emphasis on reproductive phases and social status. Annals of the New York Academy of Sciences, 2009, 1163: 517-520 (doi: 10.1111/j.1749-6632.2008.03632.x).
- Fostier A., Le Gac F., Loir M. Insulin-like growth factors and gonadal regulation in fish. Con-traception, Fetilite, Sexualite, 1994, 22(9): 548-550.
- Loir M., Le Gac F. Insulin-like growth factor-I and -II binding and action on DNA synthesis in rainbow trout spermatogonia and spermatocytes. Biology of Reproduction, 1994, 51(6): 1154-1163 (doi: 10.1095/biolreprod51.6.1154).
- Chen T.T., Shamblott M., Jennkan L.V. Fish IGF-I and IGF-II: age-related and tissue-specific expression and transgenesis. Animal Cell Technology, Basic & Applied Aspects, 1994, 6: 127-135.
- Chauvigne F., Gabillard J.C., Weil C., Rescan P.Y. Effect of refeeding on IGFI, IGFII, IGF receptors, FGF2, FGF6, and myostatin mRNA expression in rainbow trout myotomal muscle. Gen-eral and Comparative Endocrinology, 2003, 132(2): 209-215 (doi: 10.1016/s0016-6480(03)00081-9).
- Biga P.R., Schelling G.T., Hardy R.W., Cain K.D., Overturf K, Ott T.L. The effects of recom-binant bovine somatotropin (rbST) on tissue IGF-I, IGF-I receptor, and GH mRNA levels in rainbow trout, Oncorhynchus mykiss. General and Comparative Endocrinology, 2004, 135(3): 324-333 (doi: 10.1016/j.ygcen.2003.10.014).
- Duan C., Plisetskaya E.M. Nutritional regulation of insulin-like growth factor-I mRNA expression in salmon tissues. Journal of Endocrinology, 1993, 139(2): 243-252 (doi: 10.1677/joe.0.1390243).
- Duguay S.J., Swanson P., Dickho V.W. Differential expression and hormonal regulation of alter-natively spliced IGF-I mRNA transcripts in salmon. Journal of Molecular Endocrinology, 1994, 12(1): 25-37 (doi: 10.1677/jme.0.0120025).
- Vong Q.P., Chan K.M., Cheng C.H. Quantification of common carp (Cyprinus carpio) IGF-I and IGF-II mRNA by real-time PCR: differential regulation of expression by GH. Journal of Endocrinology, 2003, 178(3): 513-521 (doi: 10.1677/joe.0.1780513).
- Reinecke M., Schmid A., Ermatinger R., Loffing-Cueni D. Insulin-like growth factor I in the teleost Oreochromis mossambicus the tilapia: gene sequence, tissue expression, and cellular locali-zation. Endocrinology, 1997, 138(9): 3613-3619 (doi: 10.1210/endo.138.9.5375).
- Fenn C.M., Bledsoe J.W., Small B.C. Functional characterization of insulin-like growth factors in an ancestral fish species, the Shovelnose sturgeon Scaphirhynchus platorhynchus. Comparative Biochemistry and Physiology, 2016, 199: 21-27 (doi: 10.1016/j.cbpa.2016.04.021).
- Rotwein P., Pollock K.M., Didier D.K., Krivi G.G. Organization and sequence of the human insulin-like growth factor I gene. J. Biol. Chem., 1986, 261(11): 4828-4832.
- Shimatsu A., Rotwein P. Mosaic evolution of the insulin-like growth factors. J. Biol. Chem., 1987, 262: 7894-7900.
- Chen M.H., Lin G., Gong, H., Weng C., Chang C., Wu J. The characterization of prepro-insulin-like growth factor-1 Ea-2 expression and insulin-like growth factor-1 genes (devoid 81 bp) in the zebrafish (Danio rerio). Gene, 2001, 268(1-2): 67-75 (doi: 10.1016/s0378-1119(01)00433-4).
- Kavsan V.M., Grebenjuk V.A., Koval A.P., Skorokhod A.S., Roberts C.T.J., Leroith D. Isolation of a second nonallelic insulin-like growth factor I gene from the salmon genome. DNA and Cell Biology, 1994, 13(5): 555-559 (doi: 10.1089/dna.1994.13.555).
- Tanaka M., Taniguchi T., Yamamoto I., Sakaguchi K., Yoshizato H., Ohkubo T., Nakashima K. Gene and cDNA structures of flounder insulin-like growth factor-I (IGF-I): multiple mRNA species encode a single short mature IGF-I. DNA and Cell Biology, 1998, 17(10): 859-868 (doi: 10.1089/dna.1998.17.859).
- Amores A., Force A., Yan Y.L., Joly L., Amemiya C., Fritz A., Ho R.K., Langeland J., Prince V., Wang Y.L. Zebrafish hox clusters and vertebrate genome evolution. Science, 1998, 282(5394): 1711-1714 (doi: 10.1126/science.282.5394.1711).
- Bailey G.S., Poulter R.T.M., Stockwell P.A. Gene duplication in tetraploid fish — model for gene silencing at unlinked duplicated loci. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(11): 5575-5579 (doi: 10.1073/pnas.75.11.5575).
- Wallis A.E., Devlin R.H. Duplicate insulin-like growth factor-I genes in salmon display alternative splicing pathways. Mol. Endocrinol., 1993, 7(3): 409-422 (doi: 10.1210/mend.7.3.7683374).
- Macqueen D.J., Johnston I.A. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proceedings of the Royal Society B, 2014, 281(1778): 20132881 (doi: 10.1098/rspb.2013.2881).
- Allendorf F.W., Thogaard G.H. Tetraploidy and evolution of salmonids fishes. Evolutionary genetics of fishes /B.J. Turner (ed.). Plenum Publishing Corporation, New York, 1984.
- Macqueen D.J., Johnston I.A. Evolution of follistatin in teleosts revealed through phylogenetic, genomic and expression analyses. Development Genes and Evolution, 2008, 218(1): 1-14 (doi: 10.1007/s00427-007-0194-8).
- Duan C., Duguay S.J., Swanson P., Dickhoff W.W., Plisetskaya E.M. Tissue-specific expression of insulin-like growth factor I mRNAs in salmonids: developmental, hormonal, and nutritional regulation. In: Perspective in comparative endocrinology /K.G. Davey, S.S. Tobe, D.E. Peter (eds.). National Research Council of Canada, Toronto, 1994: 365-372.
- Shamblott M.J., Cheng C.M., Bolt D., Chen T.T. Appearance of insulin-like growth factor mRNA in the liver and pyloric ceca of a teleost in response to exogenous growth hormone. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(15): 6943-6946 (doi: 10.1073/pnas.92.15.6943).
- Dong H., Zeng L., Duan D., Zhang H., Wang Y., Li W., Lin H. Growth hormone and two forms of insulin-like growth factors I in the giant grouper (Epinephelus lanceolatus): molecular cloning and characterization of tissue distribution. Fish Physiology and Biochemistry, 2010, 36(2): 201-212 (doi: 10.1007/s10695-008-9231-4).
- Amaral I.P.G., Johnston I.A. Insulin-like growth factor (IGF) signalling and genome-wide tran-scriptional regulation in fast muscle of zebrafish following a single-satiating meal. Journal of Experimental Biology, 2011, 214(13): 2125-2139 (doi: 10.1242/jeb.053298).
- Tsai H.Y., Hamilton A., Guy D.R., Houston R.D. Single nucleotide polymorphisms in the insu-lin-like growth factor 1 (IGF1) gene are associated with growth-related traits in farmed Atlantic salmon. Anim. Genet., 2014, 456: 709-715 (doi: 10.1111/age.12202).
- Li X.H., Bai J.J., Ye X., Hu Y.C., Li S.J., Yu L.Y. Polymorphisms in the 5' flanking region of the insulin-like growth factor I gene are associated with growth traits in largemouth bass Microp-terus salmoides. Fish. Sci., 2009, 75: 351-358.
- Ge W., Davis M.E., Hines H.C., Irvin K.M., Simmen R.C.M. Association of a genetic marker with blood serum insulin-like growth factor-I concentration and growth traits in Angus cattle. Journal of Animal Science, 2001, 79(7): 1757-1762 (doi: 10.2527/2001.7971757x).
- Li X., Bai J., Hu Y., Ye X., Li S., Yu L. Genotypes, haplotypes and diplotypes of IGF-II SNPs and their association with growth traits in largemouth bass (Micropterus salmoides). Molecular Biology Reports, 2012, 39(4): 4359-4365 (doi: 10.1007/s11033-011-1223-2).
- Feng X., Yu X., Tong J. Novel Single nucleotide polymorphisms of the insulin-like growth factor-i gene and their associations with growth traits in common carp (Cyprinus carpio L.). International Journal of Molecular Sciences, 2014, 15(12): 22471-22482 (doi: 10.3390/ijms151222471).
- Teng T., Zhao X., Li C., Guo J., Wang Y., Pan C., Ling Q. Cloning and expression of IGF-I, IGF-II, and GHR genes and the role of their single-nucleotide polymorphisms in the growth of pikeperch (Sander lucioperca). Aquaculture International, 2020, 28(4): 1547-1561 (doi: 10.1007/s10499-020-00542-z).
- Yu J., Chen X., Li J., Tang Y., Li H., Xu P., Dong Z. Isolation of IGF2 and association of IGF2 polymorphism with growth trait in genetically improved farmed tilapias, Oreochromis niloticus L. Aquaculture Research, 2010, 41(11): e743-e750 (doi: 10.1111/j.1365-2109.2010.02540.x).
- Khatab S.A., Hemeda S.A., El-Nahas A.F., El Naby W.S. Genetic polymorphism in IGF-II gene and its relationship with growth rate in Tilapia nilotica. Alexandria Journal of Veterinary Sciences, 2014, 43(1): 26-32 (doi: 10.5455/ajvs.167827).
- Fan S., Wang P., Zhao C., Yan L., Zhang B., Qiu L. Molecular cloning, screening of single nucleotide polymorphisms, and analysis of growth-associated traits of igf2 in spotted sea bass (Lateolabrax maculatus). Animals, 2023, 13(6): 982 (doi: 10.3390/ani13060982).
- Gokcek O.E., Isik R., Karahan B., Gamsiz K. Genetic variation of insulin-like growth factor II (IGF-II) gene and its associations with growth traits in european sea bass (Dicentrarchus labrax). Turkish Journal of Fisheries and Aquatic Science, 2020, 20(7): 541-548 (doi: 10.4194/1303-2712-v20_7_04).
- Gоkçek E.О., Isık R. Associations between genetic variants of the insulin-like growth factor I (IGF-I) gene and growth traits in European sea bass (Dicentrarchus labrax, L.). Fish Physiology and Biochemistry, 2020, 46(3): 1131-1138 (doi: 10.1007/s10695-020-00779-8).
- Johnsson J.I., Björnsson B.T. Growth hormone increases growth rate, appetite and dominance in juvenile rainbow trout, Oncorhynchus mykiss. Animal Behaviour, 1994, 48(1): 177-186 (doi: 10.1006/anbe.1994.1224).
- Almuly R., Cavari B., Ferstman H., Kolodny O., Funkenstein B. Genomic structure and sequence of the gilthead seabream (Sparus aurata) growth hormone-encoding gene: identification of minisatellite polymorphism in intron I. Genome, 2000, 43(5): 836-845 (doi: 10.1139/g00-051).
- Devlin R.H., Yesaki T.Y., Donaldson E.M., Du S.J., Hew C.L. Production of germline transgenic Pacific salmonids with dramatically increased growth performance. Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52(7): 1376-1384 (doi: 10.1139/f95-133).
- Cavari B., Funkenstein B., Chen T.T., Gonzalez-Villasenor L.I., Schartl M. Effect of growth hormone on the growth rate of the gilthead seabream (Sparus aurata), and use of different con-structs for the production of transgenic fish. Aquaculture, 1993, 111: 189-197.
- Sakamoto T., McCormick S.D. Osmoregulatory actions of growth hormone and its mode of action in salmonids. Fish Physiology and Biochemistry, 1993, 11(1-6): 155-162 (doi: 10.1007/BF00004562).
- Sakamoto T., Hirano T. Growth hormone receptors in the liver and osmoregulatory organs of rainbow trout: characterization and dynamics during adaptation to seawater. Journal of Endocri-nology, 1991, 130(3): 425-433 (doi: 10.1677/joe.0.1300425).
- Bolton J.P., Collie N.L., Kawauchi H., Hirano T. Osmoregulatory actions of growth hormone in rainbow trout (Salmo gairdneri). Journal of Endocrinology, 1987, 112(1): 63-68 (doi: 10.1677/joe.0.1120063).
- Gomez J.M., Mourot B., Fostier A., Le Gac F. Growth hormone receptors in ovary and liver during gametogenesis in female rainbow trout (Oncorhynchus mykiss). J. Reprod. Fertil., 1999, 115(2): 275-285 (doi: 10.1530/jrf.0.1150275).
- McLean E., Donaldson E.M., Teskeredzic E., Souza L.M. Growth enhancement following die-tary delivery of recombinant porcine somatotropin to diploid and triploid of coho salmon (On-corhynchus kisutch). Fish Physiology and Biochemistry, 1993, 11(1-6): 363-369 (doi: 10.1007/BF00004586).
- Goodman H.M. Growth hormones and metabolism. In: The endocrinology of growth, development and metabolism in vertebrates /M.P. Schreibman, C.C. Scanes, P.K.T. Pang (eds.). Academic Press, San Diego, 1993: 93-115.
- Davidson M.B. Effect of growth hormone on carbohydrate and lipid metabolism. Endocrine reviews, 1987, 8(2): 115-131 (doi: 10.1210/edrv-8-2-115).
- Vijayakumar A., Yakar S., Leroith D. The intricate role of growth hormone in metabolism. Frontiers in Endocrinology, 2011, 2: 32 (doi: 10.3389/fendo.2011.00032).
- Calduch-Giner J.A., Sitja-Bobadilla A., Alvarez-Pellitero P., Perez-Sanchez J. Growth hormone as an in vitro phagocyte-activating factor in the gilthead seabream (Sparus aurata). Cell. Tiss. Res., 1997, 287(3): 535-540 (doi: 10.1007/s004410050777).
- Yada T., Nagae M., Moriyama S., Azuma T. Effects of prolactin and growth hormone on plasma immunoglobulin M levels of hypophysectomized rainbow trout, Oncorhynchus mykiss. General and Comparative Endocrinology, 1999, 115(1): 46-52 (doi: 10.1006/gcen.1999.7282).
- Bjornsson B.T. The biology of salmon growth hormone: from daylight to dominance. Fish Phys-iology Biochemistry, 1997, 17: 9-24 (doi: 10.1023/A:1007712413908).
- Cao Q.P., Duguay S.J., Plisetskaya E., Steiner D.F., Chan S.J. Nucleotide sequence and growth hormone-regulated expression of salmon insulin-like growth factor-I mRNA. Molecular Endocrinology, 1989, 3(12): 2005-2010 (doi: 10.1210/mend-3-12-2005).
- Sakamoto T., Hirano T., Madsen S.S., Nishioka R.S., Bern H.A. Insulin-like growth factor I gene expression during parr-smolt transformation of Coho salmon. Zoological Science, 1995, 12(2): 249-252 (doi: 10.2108/zsj.12.249).
- Perrot V., Funkenstein B. Cellular distribution of insulin-like growth factor-II (IGF-II) mRNA and hormonal regulation of IGF-I and IGF-II mRNA expression in rainbow trout testis (On-corhynchus mykiss). Fish Physiol. Biochem., 1999, 20: 219-229 (doi: 10.1023/A:1007735314871).
- Bart H.L.Jr., Reneau P.C., Doosey M.H., Bell C.B. Evolutionary divergence of duplicate copies of the growth hormone gene in suckers (Actinopterygii: Catostomidae). International Journal of Molecular Sciences, 2010, 11(3): 1090-1102 (doi: 10.3390/ijms11031090).
- Ho W.K., Tsang W.H., Dias N.P. Cloning of the grass carp growth hormone cDNA. Biochem-ical and Biophysical Research Communications, 1989, 161(3): 1239-1243 (doi: 10.1016/0006-291x(89)91375-2).
- Hong Y., Schartl M. Sequence of the growth hormone (GH) gene from the silver carp (Hy-pophthalmichthys molitrix) and evolution of the GH genes in vertebrates. Biochimica et biophysica acta, 1993, 1174(3): 285-288 (doi: 10.1016/0167-4781(93)90199-n).
- Chiou C.-S., Chen H.T., Chang W.C. The complete nucleotide sequence of the growth-hormone gene from the common carp (Cyprinus carpio). Biochimica et Biophysica Acta, Gene Structure and Expression, 1990, 1087(1): 91-94 (doi: 10.1016/0167-4781(90)90126-m).
- Rajesh R., Majumdar K.C. A comparative account of the structure of the growth hormone en-coding gene and genetic interrelationship in six species of the genus Labeo. Fish Physiol. Biochem., 2007, 33(4): 311-333 (doi: 10.1007/s10695-007-9164-3).
- Tang Y., Lin C.M., Chen T.T., Kawauchi H., Dunham R.A., Powers D.A. Structure of channel cat fish (Ictalurus punctatus) growth hormone gene and its evolutionary implications. Molecular Marine Biology and Biotechnology, 1993, 2(4):198-206.
- Zhu C., Pan Z., Chang G., Wang H., Ding H., Wu N., Qiang X., Yu X., Wang L., Zhang J. Polymorphisms of the growth hormone gene and their association with growth traits and sex in Sarcocheilichthys sinensis. Molecular Genetics and Genomics, 2020, 295(6): 1477-1488 (doi: 10.1007/s00438-020-01714-5).
- De Noto F.M., Moore D.D., Goodman H.M. Human growth DNA sequence and mRNA struc-ture: possible alternative splicing. Nucleic Acids Research, 1981, 9(15): 3719-3730 (doi: 10.1093/nar/9.15.3719).
- Johansen B., Johnsen O.C., Valla S. The complete nucleotide sequence of the growth-hormone gene from Atlantic salmon (Sabno salar). Gene, 1989, 77(2): 317-324 (doi: 10.1016/0378-1119(89)90079-6).
- Agellon L.B., Davies S.L., Lin C.-M., Chen T.T., Powers D.A. Rainbow trout has two genes for growth hormone. Molecular Reproduction and Development, 1988, 1(1): 11-17 (doi: 10.1002/mrd.1080010104).
- Devlin R.H. Sequence of sockeye salmon type 1 and 2 growth hormone genes and the relationship of rainbow trout with Atlantic and Pacific salmon. Canadian Journal of Fisheries and Aquat. Sci-ences, 1993, 50(8): 1738-1748 (doi: 10.1139/f93-195).
- Ber R., Daniel V. Structure and sequence of the growth hormone-encoding gene from Tilapia nilotica. Gene, 1992, 113(2): 245-250 (doi: 10.1016/0378-1119(92)90402-b).
- Venkatesh B., Brenner S. Genomic structure and sequence of the pufferfish (Fugu rubripes) growth hormone-encoding gene: a comparative analysis of teleost growth hormone genes. Gene, 1997, 187(2): 211-215 (doi: 10.1016/s0378-1119(96)00750-0).
- Ber R., Daniel V. Sequence analysis suggests a recent duplication of growth hormone encoding gene in Tilapia nilotica. Gene, 1993, 125(2): 143-150 (doi: 10.1016/0378-1119(93)90321-s).
- Law M.S., Cheng K.W., Fung T.Z., Chan Y.H., Yu K.L., Chan K.M. Isolation and characteri-zation of two distinct growth hormone cDNAs from the goldfish, Carassius auratus. Archives of Biochemistry and Biophysics, 1996, 330(1): 19-23 (doi: 10.1006/abbi.1996.0221).
- Du S.J., Devlin R.H., Hew C.L. Genomic structure of growth-hormone genes in Chinook salmon (Oncorhynchus tshawytscha) — presence of 2 functional genes, GH-I and GH-II, and a malespecific pseudogene, GH-Psi. DNA and Cell Biology, 1993, 12(8): 739-751 (doi: 10.1089/dna.1993.12.739).
- Figueroa J., San Martín R., Flores C., Grothusen H., Kausel G. Seasonal modulation of growth hormone mRNA and protein levels in carp pituitary: evidence for two expressed genes. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2005, 175(3): 185-192 (doi: 10.1007/s00360-005-0474-4).
- Lorens J.B., Nerland A.H., Aasland R., Lossius I., Male R. Expression of growth hormone genes in Atlantic salmon. Journal of Molecular Endocrinology, 1993, 11(2): 167-179 (doi: 10.1677/jme.0.0110167).
- Chen T.T., Agellon L.B., Lin C.M., Tsai H.J., Zhang P., González-Villasénor L.I., Powers D.A. Evolutionary implications of two rainbow trout growth hormone genes. Fish Physiology and Bio-chemistry, 1989, 7(1-6): 381-385 (doi: 10.1007/BF00004732).
- Yuan X., Lin Y., Qin J., Zhang Y., Yang G., Cai R., Liao Z., Sun C., Li W. Molecular identifi-cation, tissue distribution and in vitro functional analysis of growth hormone and its receptors in red-spotted grouper (Epinephelus akaara). Comparative Biochemistry and Physiology. Part B, Bio-chemistry & Molecular Biology, 2020, 250: 110488 (doi: 10.1016/j.cbpb.2020.110488).
- Al-Azzawy M.A.N., Al-Khshali M.S. Relationship of growth hormone gene with some of pro-ductive traits of common carp Cyprinus carpio. Iraqi Journal of Agricultural Sciences, 2018, 49(6): 1011-1017 (doi: 10.36103/ijas.v49i6.137).
- Berenjkar N., Khalesi M.K., Rahimi Mianji G., Farhadi A. Association between growth hormone gene polymorphisms and growth traits in wild common carp, Cyprinus carpio from the Caspian Sea. Iranian Journal of Fisheries Sciences, 2018, 17(3): 533-541 (doi: 10.22092/IJFS.2018.116471).
- Tian C., Yang M., Lv L., Yuan Y., Liang X., Guo W., Song Y., Zhao C. Single nucleotide polymorphisms in growth hormone gene and their association with growth traits in Siniperca chuatsi (Basilewsky). Int. J. Mol. Sci., 2014, 15(4): 7029-7036 (doi: 10.3390/ijms15047029).
- Wang H., Sun J., Wang P., Lu X., Xu P., Gu Y., Li G. Polymorphism in growth hormone gene and its association with growth traits in Siniperca chuatsi. The Israeli Journal of Aquaculture - Bamidgeh, 2016, 68: 1-8 (doi: 10.46989/001c.20833).
- Sun C., Sun H., Dong J. Correlation analysis of mandarin fish (Siniperca chuatsi) growth hormone gene polymorphisms and growth traits. Journal of Genetics, 2019, 98(2): 58.
- Ni J., You F., Xu J., Xu D., Wen A., Wu Z., Xu Y., Zhang P. Single nucleotide polymorphisms in intron 1 and intron 2 of Larimichthys crocea growth hormone gene are correlated with growth traits. Chinese Journal of Oceanology and Limnology, 2012, 30(2): 279-285 (doi: 10.1007/s00343-012-1078-y).
- Ni J., You F., Zhang P. J., Xu D. D., Xu Y.L. Primary study on PCR-SSCP analysis of the GH gene’s exons in Paralichthys olivaceus and its association with growth traits among a hatchery stock. Chinese High Technology Letters, 2006, 16: 307-312.
- Almuly R., Poleg-Danin Y., Gorshkov S., Gorshkova G., Rapoport B., Soller M., Kashi Y., Funkenstein B. Characterization of the 5' flanking region of the growth hormone gene of the marine teleost, gilthead sea bream Sparus aurata: analysis of a polymorphic microsatellite in the proximal promoter. Fisheries Science, 2005, 71: 479-490 (doi: 10.1111/j.1444-2906.2005.00991.x).
- Tanamati F., Claudino da Silva S.C., Rodriguez M.D.P., Schuroff G.P., do Nascimento C.S., Del Vesco A.P., Gasparino E. GHR and IGF-I gene expression and production characteristics associated with GH gene polymorphism in Nile tilapia. Aquaculture, 2015, 435: 195-199 (doi: 10.1016/j.aquaculture.2014.09.033).
- Blanck D.V., Gasparino E., Ribeiro R.P., Marques D.S. Polimorfismo no gene GH1-PstI asso-ciado a características corporais de linhagens de tilápia-do-nilo. Pesqu. Agropec. Bras., 2009, 44(6): 599-604.
- Jaser S.K.K., Dias M.A.D., Lago A.A., Neto R.V.R., Hilsdorf A.W.S. Single nucleotide polymor-phisms in the growth hormone gene of Oreochromis niloticus and their association with growth performance. Aquaculture Research, 2017, 48(12): 5835-5845 (doi: 10.1111/are.13406).
- Dias M.А., Neto R., Bueno-Filho J.S.S., Jaser S.K.K., Lago A.A., Hilsdorf A.W.S. Growth hor-mone gene polymorphism associated with grow-out performance of Oreochromis niloticus strains. Aquaculture, 2018, 503: 105-110 (doi: 10.7287/peerj.preprints.26592).
- Zhu T., Goh E.L.K., Graichen R., Ling L., Lobie P.E. Signal transduction via the growth hor-mone receptor. Cellular Signalling, 2001, 13(9): 599-616 (doi: 10.1016/s0898-6568(01)00186-3).
- Kobayashi Y., Vandehaar M.J., Tucker H.A., Sharma B.K., Lucy M.C. Expression of growth hormone receptor 1A messenger ribonucleic acid in liver of dairy cows during lactation and after administration of recombinant bovine somatotropin. Journal of Dairy Science, 1999, 82(9): 1910-1916 (doi: 10.3168/jds.S0022-0302(99)75426-3).
- Nakao N., Higashimoto Y., Ohkubo T., Yoshizato H., Nakai N., Nakashima K., Tanaka M. Characterization of structure and expression of the growth hormone receptor gene of the Japanese flounder (Paralichtys olivaceus). Journal of Endocrinology, 2004, 182(1): 157-164 (doi: 10.1677/joe.0.1820157).
- Benedet S., Johansson V., Sweeney G., Galay-Burgos M., Bjornsson B.T. Cloning of two Atlantic salmon growth hormone receptor isoforms and in vitro ligand-binding response. Fish Physiology and Biochemistry, 2005, 31(4): 315-329 (doi: 10.1007/s10695-005-2524-y).
- Saera-Vila A., Calduch-Giner J.-A., Perez-Sanchez J. Duplication of growth hormone receptor (GHR) in fish genome: gene organization and transcriptional regulation of GHR type I and II in gilthead sea bream (Sparus aurata). General and Comparative Endocrinology, 2005, 142(1-2): 193-203 (doi: 10.1016/j.ygcen.2004.11.005).
- Ozaki Y., Fukada H., Kazeto Y., Adachi S., Hara A., Yamauchi K. Molecular cloning and char-acterization of growth hormone receptor and its homologue in the Japanese eel (Anguilla japon-ica). Comparative Biochemistry and Physiology B—Biochemistry & Molecular Biology, 2006, 143(4): 422-431 (doi: 10.1016/j.cbpb.2005.12.016).
- Jiang L.-S., Ruan Z.-H., Lu Z.-Q., Li Y.-F., Luo Y.-Y., Zhang X.-Q., Liu W.-S. Novel SNPs in the 3′UTR region of GHRb gene associated with growth traits in striped catfish (Pangasianodon hypophthalmus), a valuable aquaculture species. Fishes, 2022, 7: 230 (doi: 10.3390/fishes7050230).
- Liu S., Jia Y., Liu J., Zheng J., Chi M., Cheng S., Jiang W., Gu Z., Zhao J. Molecular charac-terization of two growth hormone receptor genes, and association analysis between microsatellite polymorphism and growth traits in the topmouth culter (Culter alburnus). Journal of Fisheries of China, 2020, 44(6): 894-906 (doi: 10.11964/jfc.20190211669).
- Chen B.-L., Xiao W., Zou Z.-Y., Zhu J.-L., LI D.-Y., Yu J., Yang H. Correlation analysis of polymorphisms in promoter region and coding region of GHR and IGF-Ⅰ genes with growth traits of two varieties of Nile tilapia (Oreochromis niloticus). Journal of Agricultural Biotechnology, 2020, 28(11): 2032-2047.
- Zhao J.L., Si Y.F., He F., Wen H.S., Li J.F., Ren Y.Y., Chen S.L. Polymorphisms and DNA methylation level in the CpG site of the GHR1 gene associated with mRNA expression, growth traits and hormone level of half-smooth tongue sole (Cynoglossus semilaevis). Fish Physiology and Biochemistry, 2015, 41(4): 853-865 (doi: 10.1007/s10695-015-0052-y).
- Зиновьева Н., Гладырь Е., Державина Г., Кунаева Е. Методы маркер-зависимой селекции. Животноводство России, 2006, 3: 39-31.
- Виноградова И.В., Костюнина О.В., Сермягин А.А., Харзинова В.Р., Зиновьева Н.А. Ассоциация полиморфизма генов и с показателями молочной продуктивности коров черно-пестрой породы. Молочное и мясное скотоводство, 2018, 2: 8-11.
- Денискова Т.Е., Петров С.Н., Сермягин А.А., Доцев А.В., Форнара М.С., Reyer H., Wim-mers К., Багиров В.А., Brem G., Зиновьева Н.А. Поиск геномных вариантов, ассоциированных с живой массой у овец, на основе анализа высокоплотных SNP генотипов. Сельскохозяйственная биология, 2021, 56(2): 279-291 (doi: 10.15389/agrobiology.2021.2.279rus).
- Коршунова Л.Г., Карапетян Р.В., Комарчев А.С., Куликов Е.И. Ассоциации однонуклео-тидных замен в генах-кандидатах с хозяйственно полезными признаками у кур (Gallus gallus domesticus L.) (обзор) Сельскохозяйственная биология, 2023, 58(2): 205-222 (doi: 10.15389/agrobiology.2023.2.205rus).
- Мельникова Е.Е., Бардуков Н.В., Форнара М.С., Костюнина О.В., Сермягин А.А., Brem G., Зиновьева Н.А. Влияние генотипов по ДНК-маркерам на воспроизводительные качества свиней пород крупная белая и ландрас. Сельскохозяйственная биология, 2019, 54(2): 227-238 (doi: 10.15389/agrobiology.2019.2.227rus).
- Седых Т.А., Гладырь Е.А., Гусев И.В., Харзинова В.Р., Гизатуллин Р.С., Калашникова Л.А. Оценка мясной продуктивности бычков в связи с полиморфизмом по генам GH и DGAT1. Зоотехния, 2016, 9: 7-10.