Гибридная архитектура нейронной сети для задачи классификации музыкального жанра
Бесплатный доступ
Рассматривается вопрос классификации музыкальных жанров при помощи различных видов гибридной нейронной сети, основанной на комбинации свёрточной и рекуррентной нейронных сетей. Статья направлена на анализ возможностей нескольких моделей для классификации музыки и определение того, какая модель лучше подходит для этой задачи. Эти результаты проливают свет на дальнейшие исследования музыки.
Нейронная сеть, свёрточная нейронная сеть, рекуррентная нейронная сеть, классификация музыки, gtzan мел-спектрограмма
Короткий адрес: https://sciup.org/140300752
IDR: 140300752
Список литературы Гибридная архитектура нейронной сети для задачи классификации музыкального жанра
- Elbir, A.; Aydin, N. Music genre classification and music recommendation by using deep learning. Electron. Lett. 2020, 56, 627-629.
- Rajanna, A.R.; Aryafar, K.; Shokoufandeh, A.; Ptucha, R. Deep neural networks: A case study for music genre classification. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9-11 December 2015; pp. 655-660.
- Tzanetakis, G.; Cook, P. Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 2002, 10, 293-302.
- Xu, C.; Maddage, N.C.; Shao, X.; Cao, F.; Tian, Q. Musical genre classification using support vector machines. In Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, 6-10 April 2003; Volume 5, pp. 429-432.
- Kour, G.; Mehan, N. Music genre classification using MFCC, SVM and BPNN. Int. J. Comput. Appl. 2015, 112, 12-14.
- Patil, N.M.; Nemade, M.U. Music genre classification using MFCC, K-NN and SVM classifier. Int. J. Comput. Eng. Res. Trends 2017, 4, 43-47.
- Khasgiwala, Y.; Tailor, J. Vision transformer for music genre classification using mel-frequency cepstrum coefficient. In Proceedings of the 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur, Malaysia, 23-25 September 2021; pp. 1-5.
- Pelchat, N.; Gelowitz, C.M. Neural network music genre classification. Can. J. Electr. Comput. Eng. 2020, 43, 170-173.
- Cheng, Y.H.; Kuo, C.N. Machine Learning for Music Genre Classification Using Visual Mel Spectrum. Mathematics 2022, 10, 4427.
- Jena, K.K.; Bhoi, S.K.; Mohapatra, S.; Bakshi, S. A hybrid deep learning approach for classification of music genres using wavelet and spectrogram analysis. Neural Comput. Appl. 2023, 1-26.
- Zhao, H.; Zhang, C.; Zhu, B.; Ma, Z.; Zhang, K. S3t: Self-supervised pre-training with swin transformer for music classification. In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22-27 May 2022; pp. 606-610.
- Silla, C.N.; Koerich, A.L.; Kaestner, C.A. A machine learning approach to automatic music genre classification. J. Braz. Comput. Soc. 2008, 14, 7-18.
- Bahuleyan, H. Music genre classification using machine learning techniques. arXiv 2018, arXiv: 1804.01149.
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436444.
- Bisharad, D.; Laskar, R.H. Music genre recognition using convolutional recurrent neural network architecture. Expert Syst. 2019, 36, 1-13.
- Huang, A.; Wu, R. Deep Learning for Music. arXiv 2016, arXiv:1606.04930.
- Abdoli, S.; Cardinal, P.; Koerich, A.L. End-to-end environmental sound classification using a 1D convolutional neural network. Expert Syst. Appl. 2019, 136, 252-263.
- Murad, A.; Pyun, J.-Y. Deep Recurrent Neural Networks for Human Activity Recognition. Sensors 2017, 17, 2556.
- Wu, W.; Han, F.; Song, G.; Wang, Z. Music Genre Classification Using Independent Recurrent Neural Network. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi'an, China, 30 November-2 December 2018; pp. 192-195.
- Ashraf, M.; Ahmad, F.; Rauqir, R.; Abid, F.; Naseer, M.; Haq, E. Emotion Recognition Based on Musical Instrument using Deep Neural Network. In Proceedings of the 2021 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 17-19 December 2021; pp. 323-328.
- Rimmer, M. Beyond omnivores and univores: The promise of a concept of musical habitus. Cult. Sociol. 2012, 6, 299-318.
- Chaudhury, M.; Karami, A.; Ghazanfar, M.A. Large-Scale Music Genre Analysis and Classification Using Machine Learning with Apache Spark. Electronics 2022, 11, 2567.
- Liu, J.; Wang, C.; Zha, L. A middle-level learning feature interaction method with deep learning for multi-feature music genre classification. Electronics 2021, 10, 2206
- Abeßer, J.; Müller, M. Jazz bass transcription using a U-net architecture. Electronics 2021, 10, 670.
- Zhuang, Y.; Chen, Y.; Zheng, J. Music genre classification with transformer classifier. In Proceedings of the 2020 4th International Conference on Digital Signal Processing, Chengdu, China, 19-21 June 2020; pp. 155-159.
Статья научная