Гибридный метод обучения сверточных нейронных сетей

Автор: Андрей Николаевич Голубинский, Андрей Андреевич Толстых

Журнал: Информатика и автоматизация (Труды СПИИРАН).

Рубрика: Искусственный интеллект, инженерия данных и знаний

Статья в выпуске: Том 20 № 2, 2021 года.

Бесплатный доступ

Предложен гибридный метод обучения сверточных нейронных сетей. Метод заключается в объединении методов второго и первого порядка для разных элементов архитектуры сверточной нейронной сети. Гибридный метод обучения сверточных нейронных сетей позволяет добиваться значительно лучшей сходимости по сравнению с методом обучения сверточных нейронных сетей «Adam» и требует меньше вычислительных операций для реализации. Рассматриваемый метод применим для обучения сетей, на которых происходит паралич обучения при использовании методов первого порядка. Более того, предложенный метод обладает способностью подстраивать свою вычислительную сложность под аппаратные средства, на которых производится вычисление, вместе с тем гибридный метод позволяет использовать подход обучения мини-пакетов. Приведен анализ соотношения вычислений между сверточными нейронными сетями и полносвязными искусственными нейронными сетями. Рассмотрен математический аппарат оптимизации ошибки искусственных нейронных сетей, включающий в себя метод обратного распространения ошибки, алгоритм Левенберга-Марквардта. Проанализированы основные ограничения данных методов, возникающие при обучении сверточной нейронной сети. Проведен анализ устойчивости предлагаемого метода при изменении инициализирующих параметров. Приведены результаты применимости метода в различных задачах.

Еще

Сверточные нейронные сети, методы обучения искусственных нейронных сетей, методы оптимизации

Короткий адрес: https://sciup.org/14127324

IDR: 14127324   |   DOI: 10.15622/ia.2021.20.2.8

Статья