Hybrid approach for time series forecasting based on a penalty P-spline and evolutionary optimization
Автор: Kochegurova Elena Alekseevna, Repina Elizaveta Yuryevna, Tsekhan Olga Borisovna
Журнал: Компьютерная оптика @computer-optics
Рубрика: Численные методы и анализ данных
Статья в выпуске: 5 т.44, 2020 года.
Бесплатный доступ
In this work, a hybrid-forecasting model is proposed. The model includes a recursive penalty P-spline with parameters adaptation based on evolutionary optimization algorithms. In short-term forecasting, especially in real-time systems, the urgent task is to increase the forecast speed without compromising its quality. High forecasting speed has been achieved by an economical computational scheme of a recurrent P-spline with a shallow depth of prehistory. When combined with the adaptation of some parameters of the P-spline, such an approach allows you to control the forecast accuracy.
Штрафной p-сплайн, penalized spline, smoothing spline, digital filter, impulse infinite response (iir filter), instrumental function, amplitude and phase-frequency response
Короткий адрес: https://sciup.org/140250054
IDR: 140250054 | DOI: 10.18287/2412-6179-CO-667