Глюкагоноподобный пептид 1, головной мозг, нейродегенеративные заболевания: современный взгляд

Автор: Булгакова Светлана Викторовна, Романчук Наталья Петровна, Тренева Екатерина Вячеславовна

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Медицинские науки

Статья в выпуске: 4 т.6, 2020 года.

Бесплатный доступ

Глюкагоноподобный пептид 1 - гормон, синтезируемый в кишечнике, привлекает внимание ученых своей связью с головным мозгом. Ряд исследований показали влияние глюкагоноподобного пептида 1 на функции нервной системы, такие как термогенез, контроль артериального давления, энергетический гомеостаз, нейрогенез. Кроме того, модуляция активности глюкагоноподобного пептида 1 может влиять на агрегацию амилоидного β-пептида при болезни Альцгеймера и дофамина при болезни Паркинсона. Агонисты рецептора глюкагоноподобного пептида 1 продемонстрировали благоприятное действие на ишемию головного мозга животных уменьшая площадь инфаркта, снижая неврологический дефицит, за счет ингибирования окислительного стресса, апоптоза, воспалительной реакции. Доказано их положительное влияние на когнитивные функции у животных, больных сахарным диабетом 2 типа или ожирением, улучшая обучение и память. Появляется все больше данных о нейропротективном действии агонистов рецептора глюкагоноподобного пептида 1 у животных с нейродегенеративными заболеваниями независимо от наличия сахарного диабета 2. Тем не менее, необходимы дальнейшие клинические исследования для изучения возможности использования этих препаратов для лечения болезни Паркинсона, болезни Альцгеймера и других форм когнитивных нарушений у людей. Обсуждению вышеуказанных вопросов посвящен данный обзор литературы.

Еще

Глюкагоноподобный пептид 1, головной мозг, агонисты рецептора глюкагоноподобного пептида 1, болезнь паркинсона, болезнь альцгеймера, нейродегенеративные заболевания, сахарный диабет 2 типа

Короткий адрес: https://sciup.org/14116205

IDR: 14116205   |   DOI: 10.33619/2414-2948/53/19

Список литературы Глюкагоноподобный пептид 1, головной мозг, нейродегенеративные заболевания: современный взгляд

  • Романчук П. И. Возраст и микробиота: эпигенетическая и диетическая защита, эндотелиальная и сосудистая реабилитация, новая управляемая здоровая биомикробиота // Бюллетень науки и практики. 2020. Т. 6. №2. С. 67-110. DOI: 10.33619/2414-2948/51/07
  • Романчук П. И., Волобуев А. Н. Современные инструменты и методики эпигенетической защиты здорового старения и долголетия Homo sapiens // Бюллетень науки и практики. 2020. Т. 6. №1. С. 43-70. DOI: 10.33619/2414-2948/50/06
  • Grieco M., Giorgi A., Gentile M. C., d'Erme M., Morano S., Maras B., Filardi T. Glucagon-Like Peptide-1: a focus on neurodegenerative diseases // Frontiers in neuroscience. 2019. V. 13. P. 1112. DOI: 10.3389/fnins.2019.01112
  • Булгакова С. В., Романчук П. И., Волобуев А. Н. Нейросети: нейроэндокринология и болезнь Альцгеймера // Бюллетень науки и практики. 2019. Т. 5. №6. С. 112-128. DOI: 10.33619/2414-2948/43/16
  • Булгакова С. В., Романчук П. И., Волобуев А. Н. Клинико-биофизические принципы лечения сосудистой деменции и болезни Альцгеймера // Бюллетень науки и практики. 2019. Т. 5. №5. С. 57-72. DOI: 10.33619/2414-2948/42/08
  • Haas C. B., Kalinine E., Zimmer E. R., Hansel G., Brochier A. W., Oses J. P.,.., Muller A. P. Brain insulin administration triggers distinct cognitive and neurotrophic responses in young and aged rats // Molecular neurobiology. 2016. V. 53. №9. P. 5807-5817.
  • DOI: 10.1007/s12035-015-9494-6
  • Fiory F., Perruolo G., Cimmino I., Cabaro S., Pignalosa F. C., Miele C.,.., Formisano P. The relevance of insulin action in the dopaminergic system // Frontiers in neuroscience. 2019. V. 13. P. 868.
  • DOI: 10.3389/fnins.2019.00868
  • Cabou C., Burcelin R. GLP-1, the gut-brain, and brain-periphery axes // The review of diabetic studies: RDS. 2011. V. 8. №3. P. 418.
  • DOI: 10.1900/RDS.2011.8.418
  • Sandoval D. A., D'Alessio D. A. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease // Physiological reviews. 2015. V. 95. №2. P. 513-548.
  • DOI: 10.1152/physrev.00013.2014
  • Hopsu-Havu V. K., Glenner G. G. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-β-naphthylamide // Histochemie. 1966. V. 7. №3. P. 197-201.
  • DOI: 10.1007/BF00577838
  • Smith N. K., Hackett T. A., Galli A., Flynn C. R. GLP-1: Molecular mechanisms and outcomes of a complex signaling system // Neurochemistry international. 2019. V. 128. P. 94-105.
  • DOI: 10.1016/j.neuint.2019.04.010
  • Meloni A. R., DeYoung M. B., Lowe C., Parkes, D. G. GLP-1 receptor activated insulin secretion from pancreatic β-cells: mechanism and glucose dependence // Diabetes, Obesity and Metabolism. 2013. V. 15. №1. P. 15-27.
  • DOI: 10.1111/j.1463-1326.2012.01663.x
  • Katsurada K., Yada T. Neural effects of gut-and brain-derived glucagon-like peptide-1 and its receptor agonist // Journal of diabetes investigation. 2016. V. 7. P. 64-69.
  • DOI: 10.1111/jdi.12464
  • Song W. J., Seshadri M., Ashraf U., Mdluli T., Mondal P., Keil M.,.., Hussain M. A. Snapin mediates incretin action and augments glucose-dependent insulin secretion // Cell metabolism. 2011. V. 13. №3. P. 308-319.
  • DOI: 10.1016/j.cmet.2011.02.002
  • Farilla L., Bulotta A., Hirshberg B., Li Calzi S., Khoury N., Noushmehr H.,.., Perfetti R. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets // Endocrinology. 2003. V. 144. №12. P. 5149-5158.
  • DOI: 10.1210/en.2003-0323
  • Athauda D., Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action // Drug discovery today. 2016. V. 21. №5. P. 802-818.
  • DOI: 10.1016/j.drudis.2016.01.013
  • Tramutola A., Arena A., Cini C., Butterfield D. A., Barone E. Modulation of GLP-1 signaling as a novel therapeutic approach in the treatment of Alzheimer's disease pathology // Expert review of neurotherapeutics. 2017. V. 17. №1. P. 59-75.
  • DOI: 10.1080/14737175.2017.1246183
  • Yang Y., Fang H., Xu G., Zhen Y., Zhang Y., Tian J.,.., Xu J. Liraglutide improves cognitive impairment via the AMPK and PI3K/Akt signaling pathways in type 2 diabetic rats // Molecular medicine reports. 2018. V. 18. №2. P. 2449-2457.
  • DOI: 10.3892/mmr.2018.9180
  • Pozo L., Bello F., Suarez A., Ochoa-Martinez F. E., Mendez Y., Chang C. H., Surani S. Novel pharmacological therapy in type 2 diabetes mellitus with established cardiovascular disease: Current evidence // World journal of diabetes. 2019. V. 10. №5. P. 291.
  • DOI: 10.4239/wjd.v10.i5.291
  • Li Y., Perry T., Kindy M. S., Harvey B. K., Tweedie D., Holloway H. W.,.., Brossi A. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism // Proceedings of the National Academy of Sciences. 2009. V. 106. №4. P. 1285-1290.
  • DOI: 10.1073/pnas.0806720106
  • Meier J. J., Gallwitz B., Schmidt W. E., Nauck M. A. Glucagon-like peptide 1 as a regulator of food intake and body weight: therapeutic perspectives // European journal of pharmacology. 2002. V. 440. №2-3. P. 269-279.
  • DOI: 10.1016/S0014-2999(02)01434-6
  • Van Dijk G., Thiele T. E. Glucagon-like peptide-1 (7-36) amide: a central regulator of satiety and interoceptive stress // Neuropeptides. 1999. V. 33. №5. P. 406-414.
  • DOI: 10.1054/npep.1999.0053
  • Kinzig K. P., D'Alessio D. A., Herman J. P., Sakai R. R., Vahl T. P., Figueiredo H. F.,.., Seeley R. J. CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors // Journal of Neuroscience. 2003. V. 23. №15. P. 6163-6170.
  • DOI: 10.1523/JNEUROSCI.23-15-06163.2003
  • Ruttimann E. B., Arnold M., Hillebrand J. J., Geary N., Langhans W. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms // Endocrinology. 2009. V. 150. №3. P. 1174-1181.
  • DOI: 10.1210/en.2008-1221
  • Decarie-Spain L., Fisette A., Zhu Z., Yang B., DiMarchi R. D., Tschoep M. H.,.., Clemmensen C. GLP-1/dexamethasone inhibits food reward without inducing mood and memory deficits in mice // Neuropharmacology. 2019. V. 151. P. 55-63.
  • DOI: 10.1016/j.neuropharm.2019.03.035
  • Nauck M. A., Vardarli I., Deacon C. F., Holst J. J., Meier J. J. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? // Diabetologia. 2011. V. 54. №1. P. 10-18.
  • DOI: 10.1007/s00125-010-1896-4
  • Muscogiuri G., DeFronzo R. A., Gastaldelli A., Holst J. J. Glucagon-like peptide-1 and the central/peripheral nervous system: crosstalk in diabetes // Trends in Endocrinology & Metabolism. 2017. V. 28. №2. P. 88-103.
  • DOI: 10.1016/j.tem.2016.10.001
  • Gault V. A., Hölscher C. GLP-1 agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by beta-amyloid // European journal of pharmacology. 2008. V. 587. №1-3. P. 112-117.
  • DOI: 10.1016/j.ejphar.2008.03.025
  • Simsir I. Y., Soyaltin U. E., Cetinkalp S. Glucagon like peptide-1 (GLP-1) likes Alzheimer's disease // Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2018. V. 12. №3. P. 469-475.
  • DOI: 10.1016/j.dsx.2018.03.002
  • Koekkoek P. S., Kappelle L. J., van den Berg E., Rutten G. E., Biessels G. J. Cognitive function in patients with diabetes mellitus: guidance for daily care // The Lancet Neurology. 2015. V. 14. №3. P. 329-340.
  • DOI: 10.1016/S1474-4422(14)70249-2
  • Bak M. J., Wewer Albrechtsen N. J., Pedersen J., Knop F. K., Vilsbøll T., Jørgensen N. B.,.., Holst J. J. Specificity and sensitivity of commercially available assays for glucagon-like peptide-1 (GLP-1): implications for GLP-1 measurements in clinical studies // Diabetes, Obesity and Metabolism. 2014. V. 16. №11. P. 1155-1164.
  • DOI: 10.1111/dom.12352
  • Gomez-Peralta F., Abreu C. Profile of semaglutide in the management of type 2 diabetes: design, development, and place in therapy // Drug design, development and therapy. 2019. V. 13. P. 731.
  • DOI: 10.2147/DDDT.S165372
  • Fang Y., Jiang D., Wang Y., Wang Q., Lv D., Liu J., Liu C. Neuroprotection of rhGLP-1 in diabetic rats with cerebral ischemia/reperfusion injury via regulation of oxidative stress, EAAT2, and apoptosis // Drug development research. 2018. V. 79. №6. P. 249-259.
  • DOI: 10.1002/ddr.21439
  • Lennox R., Flatt P. R., Gault V. A. Lixisenatide improves recognition memory and exerts neuroprotective actions in high-fat fed mice // Peptides. 2014. V. 61. P. 38-47.
  • DOI: 10.1016/j.peptides.2014.08.014
  • Palleria C., Leo A., Andreozzi F., Citraro R., Iannone M., Spiga R.,.., Russo E. Liraglutide prevents cognitive decline in a rat model of streptozotocin-induced diabetes independently from its peripheral metabolic effects // Behavioural brain research. 2017. V. 321. P. 157-169.
  • DOI: 10.1016/j.bbr.2017.01.004
  • Kong F. J., Wu J. H., Sun S. Y., Ma L. L., Zhou J. Q. Liraglutide ameliorates cognitive decline by promoting autophagy via the AMP-activated protein kinase/mammalian target of rapamycin pathway in a streptozotocin-induced mouse model of diabetes // Neuropharmacology. 2018. V. 131. P. 316-325.
  • DOI: 10.1016/j.neuropharm.2018.01.001
  • Filchenko I., Simanenkova A., Chefu S., Kolpakova M., Vlasov T. Neuroprotective effect of glucagon-like peptide-1 receptor agonist is independent of glycaemia normalization in type two diabetic rats // Diabetes and Vascular Disease Research. 2018. V. 15. №6. P. 567-570. https://doi.org/10.1177%2F1479164118788079
  • World Health Organization Dementia Fact Sheets. 2017. https://www.who.int/en/news-room/fact-sheets/detail/dementia
  • Dickson D. W., Braak H., Duda J. E., Duyckaerts C., Gasser T., Halliday G. M.,.., Litvan I. Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria // The Lancet Neurology. 2009. V. 8. №12. P. 1150-1157.
  • DOI: 10.1016/S1474-4422(09)70238-8
  • Olanow C. W., Tatton W. G. Etiology and pathogenesis of Parkinson's disease // Annu Rev Neurosci. 1999. V. 22. P. 123-144.
  • Lesage S., Brice A. Parkinson's disease: from monogenic forms to genetic susceptibility factors // Human molecular genetics. 2009. V. 18. №R1. P. R48-R59.
  • DOI: 10.1093/hmg/ddp012
  • Harkavyi A., Abuirmeileh A., Lever R., Kingsbury A. E., Biggs C. S., & Whitton P. S. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson's disease // Journal of neuroinflammation. 2008. V. 5. №1. P. 19.
  • DOI: 10.1186/1742-2094-5-19
  • Bertilsson G., Patrone C., Zachrisson O., Andersson A., Dannaeus K., Heidrich J.,.., Wikström L. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson's disease // Journal of neuroscience research. 2008. V. 86. №2. P. 326-338.
  • DOI: 10.1002/jnr.21483
  • Liu W., Jalewa J., Sharma M., Li G., Li L., Hölscher C. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson's disease // Neuroscience. 2015. V. 303. P. 42-50.
  • DOI: 10.1016/j.neuroscience.2015.06.054
  • Ma D., Liu X., Liu J., Li M., Chen L., Gao M.,.., Yang Y. Long-term liraglutide ameliorates nigrostriatal impairment via regulating AMPK/PGC-1a signaling in diabetic mice // Brain research. 2019. V. 1714. P. 126-132.
  • DOI: 10.1016/j.brainres.2019.02.030
  • Badawi G. A., El Fattah M. A. A., Zaki H. F., El Sayed M. I. Sitagliptin and liraglutide reversed nigrostriatal degeneration of rodent brain in rotenone-induced Parkinson's disease // Inflammopharmacology. 2017. V. 25. №3. P. 369-382.
  • DOI: 10.1007/s10787-017-0331-6
  • Badawi G. A., El Fattah M. A. A., Zaki H. F., El Sayed M. I. Sitagliptin and liraglutide modulate L-dopa effect and attenuate dyskinetic movements in rotenone-lesioned rats // Neurotoxicity research. 2019. V. 35. №3. P. 635-653.
  • DOI: 10.1007/s12640-019-9998-3
  • Zhang L., Zhang L., Li L., Hölscher C. Neuroprotective effects of the novel GLP-1 long acting analogue semaglutide in the MPTP Parkinson's disease mouse model // Neuropeptides. 2018. V. 71. P. 70-80.
  • DOI: 10.1016/j.npep.2018.07.003
  • Zhang L., Zhang L., Li L., Hölscher C. Semaglutide is neuroprotective and reduces α-synuclein levels in the chronic MPTP mouse model of Parkinson's disease // Journal of Parkinson's disease. 2019. V. 9. №1. P. 157-171.
  • DOI: 10.3233/JPD-181503
  • Athauda D., Maclagan K., Skene S. S., Bajwa-Joseph M., Letchford D., Chowdhury K. et al. Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial // The Lancet. 2017. V. 390. №10103. P. 1664-1675.
  • DOI: 10.1016/S0140-6736(17)31585-4
  • Athauda D., Maclagan K., Budnik N., Zampedri L., Hibbert S., Skene S. S.,.., & Foltynie, T. What effects might exenatide have on non-motor symptoms in Parkinson's disease: a post hoc analysis // Journal of Parkinson's disease. 2018. V. 8. №2. P. 247-258.
  • DOI: 10.3233/JPD-181329
  • Athauda D., Gulyani S., Kumar Karnati, H., Li Y., Tweedie D., Mustapic M.,.., Kapogiannis, D. Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease: a secondary analysis of the exenatide-PD trial // JAMA neurology. 2019. V. 76. №4. P. 420-429.
  • DOI: 10.1001/jamaneurol.2018.4304
  • Calsolaro V., Edison P. Novel GLP-1 (glucagon-like peptide-1) analogues and insulin in the treatment for Alzheimer's disease and other neurodegenerative diseases // CNS drugs. 2015. V. 29. №12. P. 1023-1039.
  • DOI: 10.1007/s40263-015-0301-8
  • Masciopinto F., Di Pietro N., Corona C., Bomba M., Pipino C., Curcio M.,.., Sekler I. Effects of long-term treatment with pioglitazone on cognition and glucose metabolism of PS1-KI, 3xTg-AD, and wild-type mice // Cell death & disease. 2012. V. 3. №12. P. e448-e448.
  • DOI: 10.1038/cddis.2012.189
  • Vandal M., White P. J., Tremblay C., St-Amour I., Chevrier G., Emond V.,.., Marette A. Insulin reverses the high-fat diet-induced increase in brain Aβ and improves memory in an animal model of Alzheimer disease // Diabetes. 2014. V. 63. №12. P. 4291-4301.
  • DOI: 10.2337/db14-0375
  • Freude S., Plum L., Schnitker J., Leeser U., Udelhoven M., Krone W.,.., Schubert M. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo // Diabetes. 2005. V. 54. №12. P. 3343-3348.
  • DOI: 10.2337/diabetes.54.12.3343
  • Bomfim T. R., Forny-Germano L., Sathler L. B., Brito-Moreira J., Houzel J. C., Decker H.,.., Holscher C. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease-associated Aβ oligomers // The Journal of clinical investigation. 2012. V. 122. №4. P. 1339-1353.
  • DOI: 10.1172/JCI57256
  • De Felice F. G. Alzheimer's disease and insulin resistance: translating basic science into clinical applications // The Journal of clinical investigation. 2013. V. 123. №2. P. 531-539.
  • DOI: 10.1172/JCI64595
  • Moloney A. M., Griffin R. J., Timmons S., O'Connor R., Ravid R., O'Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling // Neurobiology of aging. 2010. V. 31. №2. P. 224-243.
  • DOI: 10.1016/j.neurobiolaging.2008.04.002
  • Ma D. L., Chen F. Q., Xu W. J., Yue W. Z., Yuan G., Yang Y. Early intervention with glucagon-like peptide 1 analog liraglutide prevents tau hyperphosphorylation in diabetic db/db mice // Journal of neurochemistry. 2015. V. 135. №2. P. 301-308.
  • DOI: 10.1111/jnc.13248
  • Hachinski V., Einhäupl K., Ganten D., Alladi S., Brayne C., Stephan B. C.,.., Nishimura N. Preventing dementia by preventing stroke: The Berlin Manifesto // Alzheimer's & Dementia. 2019. V. 15. №7. P. 961-984.
  • DOI: 10.1016/j.jalz.2019.06.001
  • Nation D. A., Sweeney M. D., Montagne A., Sagare A. P., D'Orazio L. M., Pachicano M.,.., Benzinger T. L. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction // Nature medicine. 2019. V. 25. №2. P. 270-276.
  • DOI: 10.1038/s41591-018-0297-y
  • Kelly P., McClean P. L., Ackermann M., Konerding M. A., Hölscher C., Mitchell C. A. Restoration of Cerebral and Systemic Microvascular Architecture in APP/PS 1 Transgenic Mice Following Treatment with Liraglutide™ // Microcirculation. 2015. V. 22. №2. P. 133-145.
  • DOI: 10.1111/micc.12186
  • Cai H. Y., Yang J. T., Wang Z. J., Zhang J., Yang W., Wu M. N., Qi J. S. Lixisenatide reduces amyloid plaques, neurofibrillary tangles and neuroinflammation in an APP/PS1/tau mouse model of Alzheimer's disease // Biochemical and biophysical research communications. 2018. V. 495. №1. P. 1034-1040.
  • DOI: 10.1016/j.bbrc.2017.11.114
  • Cai H. Y., Hölscher C., Yue X. H., Zhang S. X., Wang X. H., Qiao F.,.., Qi J. S. Lixisenatide rescues spatial memory and synaptic plasticity from amyloid β protein-induced impairments in rats // Neuroscience. 2014. V. 277. P. 6-13.
  • DOI: 10.1016/j.neuroscience.2014.02.022
  • Solmaz V., Çınar B. P., Yiğittürk G., Çavuşoğlu T., Taşkıran D., Erbaş O. Exenatide reduces TNF-α expression and improves hippocampal neuron numbers and memory in streptozotocin treated rats // European journal of pharmacology. 2015. V. 765. P. 482-487.
  • DOI: 10.1016/j.ejphar.2015.09.024
  • Wang Y., Chen S., Xu Z., Chen S., Yao W., Gao X. GLP-1 receptor agonists downregulate aberrant GnT-III expression in Alzheimer's disease models through the Akt/GSK-3β/β-catenin signaling // Neuropharmacology. 2018. V. 131. P. 190-199.
  • DOI: 10.1016/j.neuropharm.2017.11.048
  • McClean P. L., Hölscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer's disease // Neuropharmacology. 2014. V. 76. P. 57-67.
  • DOI: 10.1016/j.neuropharm.2013.08.005
  • McClean P. L., Jalewa J., Hölscher C. Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice // Behavioural brain research. 2015. V. 293. P. 96-106.
  • DOI: 10.1016/j.bbr.2015.07.024
  • Hansen H. H., Fabricius K., Barkholt P., Kongsbak-Wismann P., Schlumberger C., Jelsing J., Terwel D., Termont A., Pyke C., Knudsen L. B., Vrang N. Long-term treatment with liraglutide, a glucagon-like peptide-1 (GLP-1) Receptor agonist, has no effect on β-amyloid plaque load in two transgenic APP/PS1 mouse models of Alzheimer's disease // PloS one. 2016. V. 11. №7.
  • DOI: 10.1371/journal.pone.0158205
  • Qi L., Ke L., Liu X., Liao L., Ke S., Liu X.,.., Chen Z. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced Alzheimer disease mouse model // European journal of pharmacology. 2016. V. 783. P. 23-32.
  • DOI: 10.1016/j.ejphar.2016.04.052
  • Parthsarathy V., Hölscher C. Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model // PloS one. 2013. Vol. 8. №3.
  • DOI: 10.1371/journal.pone.0058784
  • Hansen H. H., Fabricius K., Barkholt P., Niehoff M. L., Morley J. E., Jelsing J.,.., Vrang N. The GLP-1 receptor agonist liraglutide improves memory function and increases hippocampal CA1 neuronal numbers in a senescence-accelerated mouse model of Alzheimer's disease // Journal of Alzheimer's Disease. 2015. V. 46. №4. P. 877-888.
  • DOI: 10.3233/JAD-143090
  • Bomba M., Granzotto A., Castelli V., Massetti N., Silvestri E., Canzoniero L. M.,.., Sensi S. L. Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice // Neurobiology of aging. 2018. V. 64. P. 33-43.
  • DOI: 10.1016/j.neurobiolaging.2017.12.009
  • Bomba M., Granzotto A., Castelli V., Onofrj M., Lattanzio R., Cimini A., Sensi S. L. Exenatide reverts the high-fat-diet-induced impairment of BDNF signaling and inflammatory response in an animal model of Alzheimer's disease // Journal of Alzheimer's Disease. 2019. V. 70. №3. P. 793-810.
  • DOI: 10.3233/JAD-190237
  • Shi L., Zhang Z., Li L., Hölscher C. A novel dual GLP-1/GIP receptor agonist alleviates cognitive decline by re-sensitizing insulin signaling in the Alzheimer icv. STZ rat model // Behavioural brain research. 2017. Vol. 327. P. 65-74.
  • DOI: 10.1016/j.bbr.2017.03.032
  • Todorov A., Harris L. T., Fiske S. T. Toward socially inspired social neuroscience // Brain research. 2006. V. 1079. №1. P. 76-85.
  • DOI: 10.1016/j.brainres.2005.12.114
  • Egefjord L., Gejl M., Møller A., Brændgaard H., Gottrup H., Antropova O.,.., Rungby J. Effects of liraglutide on neurodegeneration, blood flow and cognition in Alzheimer's disease-protocol for a controlled, randomized double-blinded trial // Brain. 2012. V. 12. P. 14. PMID:
  • ISBN: 23158895
  • Gejl M., Gjedde A., Egefjord L., Møller A., Hansen S. B., Vang K.,.., Møller N. In Alzheimer's disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial // Frontiers in aging neuroscience. 2016. V. 8. P. 108.
  • DOI: 10.3389/fnagi.2016.00108
Еще
Статья обзорная