Головной мозг и сенсорные системы птиц: современное представление

Автор: Голубева Татьяна Борисовна, Корнеева Елена Владимировна

Журнал: Русский орнитологический журнал @ornis

Статья в выпуске: 1747 т.28, 2019 года.

Бесплатный доступ

Второе издание. Первая публикация: Голубева Т.Б., Корнеева Е.В. 2018. Головной мозг и сенсорные системы птиц: современное представление // Орнитология: история, традиции, проблемы и перспективы. Материалы Всерос. конф., посвящ. 120-летию со дня рождения профессора Г.П.Дементьева. М.: 119-128.

Короткий адрес: https://sciup.org/140242586

IDR: 140242586

Список литературы Головной мозг и сенсорные системы птиц: современное представление

  • Голубева Т.Б., Зуева Л.В., Корнеева Е.В., Хохлова ТВ. 2001. Развитие фоторецепторных клеток сетчатки и нейронов Wulst у птенцов мухоловки-пеструшки (Ficedula hypoleuca)//Орнитология 28: 188-202.
  • Зорина З.А., Смирнова А.А. 2018. Современные представления о когнитивных способностях врановых птиц//Орнитология: история, традиции, проблемы и перспективы. Материалы Всерос. конф., посвящ. 120-летию со дня рождения профессора Г.П.Дементьева. М.: 163-168.
  • Ahumada-Galleguillos P., Fernandez M., Marin G.J., Letelier J.C., Mpodozis J. 2015. Anatomical organization of the visual dorsal ventricular ridge in the chick (Gallus gallus): layers and columns in the avian pallium//J. Comp. Neurol. 523: 2618-2636.
  • Briscoe S.D., Albertin C.B., Rowell J.J., Ragsdale C.W. 2018. Neocortical association cell types in the forebrain of birds and alligators//Curr. Biol. 28: 686-696.
  • Carr C.E., Boudreau R.E. 1991. Central projections of auditory nerve fibers in the barn owl//J. Comp. Neurol. 314: 306-318.
  • Carr C.E. Christensen-Dalsgaard J. 2015. Sound localization strategies in three predators//Brain Behav. Evol. 86: 17-27.
  • Carr C.E., Shah S., McColgan T., Ashida G., Kuokkanen P.T., Brill S., Kempter R., Wagner H. 2015. Maps of interaural delay in the owl’s nucleus laminaris//J. Neurophysiol. 114, 3: 1862-1873
  • DOI: 10.1152/jn.00644.2015
  • Dugas-Ford J., Rowell J.J., Ragsdale C.W. 2012. Cell-type homologies and the origins of the neocortex//Proc. Natnl. Acad. Sci. U.S.A. 109: 16975-16979.
  • Franklin D.C., Garnett S.T., Luck, Gutierrez-Ibanez C., Iwaniuk A.N. 2014. Relative brain size in Australian birds//Emu 114, 2: 160-170 10.1071/MU13034
  • DOI: :10.1071/MU13034
  • Güntürkün O., Stacho M., Ströckens F. 2017. The brains of reptiles and birds//J. Kaas (ed.). Evolution of Nervous Systems. 2nd ed. London, 1: 173-221.
  • Gutierrez-Ibanez C., Iwaniuk A.N., Wylie D.R. 2018. Parrots have evolved a primate-like telencephalic-midbrain-cerebellar circuit//Scientific reports 8: 9960. www.nature.com/scientificreports
  • DOI: 10.1038/s41598-018-28301-4
  • Iwaniuk A.N., Dean K.M., Nelson J.E. 2005. Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): Comparisons with other birds and primates//Brain Behav. Evol. 65: 40-59.
  • Jarvis E.D. 2009. Evolution of the pallium in birds and reptiles//M.D. Binder, N. Hirokawa, U. Windhorst (eds.). Encyclopedia of Neuroscience. Springer: 1390-1400.
  • Karten H.J. 2015. Vertebrate brains and evolutionary connectomics: on the origins of the mammalian ‘neocortex’//Phil. Trans. R. Soc. B. 370: 20150060. http://dx.doi.org/10. 1098/rstb.2015.0060
  • Knudsen E.I. 2002. Instructed learning in the auditory localization pathway of the barn owl//Nature 417: 322-328.
  • Krützfeldt N.O.E., Logerot P., Kubke M.F., Wild J.M. 2010. Connections of the auditory brainstem in a songbird, Taeniopygia guttata. I. Projections of nucleus angularis and nucleus laminaris to the auditory torus//J. Comp. Neurol. 518: 2108-2134. doi
  • DOI: :10.1002/cne.22334
  • Luksch H. 2003. Cytoarchitecture of the avian optic tectum: neuronal substrate for cellular computation//Rev. Neurosci. 14: 85-106.
  • Heyers D., Zapka M., Hoffmeister M., Wild J.M., Mouritsen H. 2010. Magnetic field changes activate the trigeminal brainstem complex in a migratory bird//Proc. Natl. Acad. Sci. U.S.A. 107, 20: 9394-9399. 10.1073/pnas.0907068107
  • DOI: :10.1073/pnas.0907068107
  • Herculano-HouzelS., Lent R. 2005. Isotropic fractionator: A simple, rapid method for the quantification of total cell and neuron numbers in the brain//J. Neurosci. 25, 10: 2518-2521.
  • Medina S. Hunt G.R., Gray R.D., Wild J.M. Kubke M.F. 2013. Perineuronal satellite neuroglia in the telencephalon of New Caledonian crows and other Passeriformes: evidence//PeerJ 1: e110;
  • DOI: 10.7717/peerj.110
  • Mehlhorn J., Hunt G.R., Gray R.D., Rehkämper G., Güntürkün O. 2010. Tool-making New Caledonian crows have large associative brain areas//Brain Behav. Evol. 75: 63-70.
  • Nealen P.M., Ricklefs R.E. 2001. Early diversification of the avian brain: body relationship//J. Zool. 253: 391-404
  • DOI: 10.1017/S095283690100036X
  • Necker R. 2000. The avian ear and hearing//G.C.Whittow (ed.). Sturkie’s Avian Physiology. Orlando: 21-38.
  • Olkowicz S., Kocourek M., Luean R.K., Portes M., Fitch W.T., Herculano-Houzel S., NimecP. 2016. Birds have primate-like numbers of neurons in the forebrain//Proc. Natl. Acad. Sci. U.S.A. 113: 7255-7260. doi/10.1073/pnas.1517131113.
  • Pena J.L., Gutfreund Y 2014. New perspectives on the owl’s map of auditory space//Curr. Opin. Neurobiol. 24: 55-62
  • DOI: 10.1016/j.conb.2013.08.008
  • Reiner A., Bruce L., Butler A., Csillag A., Kuenzel W., Medina L., Paxinos G., Perkel D., Powers A., Shimizu T., Striedter G., Wild M., Ball G., Durand S., Güntürkün O., Lee D., Mello C., White S., Hough G., Kubikova L., Smulders T., Wada K., Dugas-Ford J., Husband S., Yamamoto K., Yu J., Siang C., Jarvis E.D. 2004. Revised nomenclature for avian telencephalon and some related brainstem nuclei//J. Comp. Neurol. 473: 377-414.
  • Reiner A., Perkel D., Mello C., Jarvis J.D. 2004. Songbirds and the revised avian brain nomenclature//H.P. Zeigler, P.R. Marler (eds.). Behavioral Neurobiology of Birdsong. Annals N.Y. Acad. Sci. 1016: 77-108.
  • Reiner A., Yamamoto K., Karten H.J. 2005. Organization and evolution of the avian forebrain//Anat. Rec. Part A. Discov. Mol. Cell. Evol. Biol. 287: 1080-1102.
  • Singheiser M., Gutfreund Y., Wagner H. 2012. The representation of sound localization cues in the barn owl’s inferior colliculus//Frontiers in Neural Circuits. 6. 10.3389/fncir.2012.00045
  • DOI: :10.3389/fncir.2012.00045
  • Sultan F. 2005. Why some bird brains are larger than others//Curr. Biol. 15, 17: R649-R650
  • DOI: 10.1016/j.cub.2005.08.043/
  • Vincze O., Vagasi C.I., Pap P.L., Osvath G., Möller A.P. 2015. Brain regions associated with visual cues are important for bird migration//Biol. Lett. 11: 20150678. http://dx.doi. org/10.1098/rsbl.2015.0678.
  • Wagner H., Güntürkün O., Nieder B. 2003. Anatomical markers for the subdivisions of the barn owl’s inferior-collicular complex and adjacent subventricular structures//J. Comp. Neurol. 465: 145-159.
  • Wagner H., Kettler L., Orlowski J., Tellers P. 2013. Neuroethology of prey capture in the barn owl (Tyto alba L.)//J. Physiol. 107: 51-61.
  • Walsh S., Milner A. 2011. Evolution of the avian brain and senses//G.Dyke, G.Kaiser (eds.). Living Dinosaurs: The Evolutionary History of Modern Birds. 1st ed. John Wiley & Sons, Ltd.: 282-305.
  • Wang Y., Brzozowska-Prechtl A., Karten H.J. 2010. Laminar and columnar auditory cortex in avian brain//Proc. Natl. Acad. Sci. USA. 107: 12676-12681.
  • Wild J.M. 1995. Convergence of somatosensory and auditory projections in the avian torus semicircularis, including the central auditory nucleus//J. Comp. Neurol. 358, 4: 465-486.
  • Wild J.M., Krützfeldt N.O.E. 2010. Neocortical-like organization of avian auditory ‘cortex’ // Сommentary on: Wang Y, Brzozowska-Prechtl A, Karten H.J. Laminar and Columnar Auditory Cortex in Avian Brain // Proc. Natl. Acad. Sci. USA. 107: 12676-12681.
  • Yu Y., Karbowski J., Sachdev R.N.S., Feng J. 2014. Effect of temperature and glia in brain size enlargement and origin of allometric body-brain size scaling in vertebrates//BMC Evol. Biol. 14: 178.
Еще
Статья обзорная