Greedy heuristic method for location problems

Автор: Kazakovtsev L.A., Antamoshkin A.N.

Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau

Рубрика: Математика, механика, информатика

Статья в выпуске: 2 т.16, 2015 года.

Бесплатный доступ

Authors consider multi-source location problems, k-means, k-median and k-medoid. Such problems are popular models in logistics (optimal location of factories, warehouses, transportation hubs etc.) and cluster analysis, approximation theory, estimation theory, image recognition. Various distance metrics and gauges allow using these models for clustering various kinds of data: continuous and discrete numeric data, Boolean vectors, documents. Wide area of application of such problems leads to growing interest of researchers in Russia and worldwide. In this paper, the authors propose a new heuristic method for solving such problems which can be used as a standalone local search method (local search multi-start) or as the main part of a new algorithm based on ideas of the probability changing method. For the parameters self-tuning of such algorithm, the authors propose new meta-heuristic which allows using new algorithm without learning specific features of each solved problem. Algorithms were tested on various data sets of size up to 160000 data vectors from the UCI repository and real data of semiconductor devices examination. For testing purposes, various distance metrics were used. Computational experiments showed the high efficiency of new algorithms in comparison with local search methods used traditionally for the considered problems. In addition, results were compared with the evolutionary methods and a deterministic algorithm based on the Information Bottleneck Clustering method. Such comparison illustrated the ability of new algorithms to reach higher preciseness of the results in reasonable time.

Еще

P-медианная задача, p-median, k-медоид, k-medoid, k-средних, k-means, information bottleneck clustering

Короткий адрес: https://sciup.org/148177421

IDR: 148177421

Список литературы Greedy heuristic method for location problems

  • Facility Location Concepts, Models, Algorithms and Case Studies/R. Z. Farahani, М. Hekmatfar (editors). Berlin Heidelberg: Springer-Verlag, 2009. 550 p.
  • Kazakovtsev L. A., Stupina A. A. Fast Genetic Algorithm with Greedy Heuristic for p-Median and k-Means Problems//IEEE 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) (October 6-8, 2014. St.-Petersburg). 2014. Р. 702-706.
  • Kazakovtsev L. A., Antamoshkin A. N. Genetic Algorithm wish Fast Greedy Heuristic for Clustering and Location Problems//Informatica. 2014. Vol. 38, iss. 3. Рp. 229-240.
  • Deza M. M. and Deza E. Encyclopedya of Distances. Berlin-Heilderberg: Springer Verlag, 2009. 590 p. DOI: DOI: 10.1007/978-3-642-00234-2_1
  • Трубин В. А. Эффективный алгоритм для задачи Вебера с прямоугольной метрикой//Кибернетика. 1978. № 6. С. 67-70. DOI: DOI: 10.1007/BF01070282/
  • Kaufman L. and Rousseeuw P. J. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990. 342 p. DOI: DOI: 10.1002/9780470316801.ch1
  • Park H. S., Jun C.-H. A simple and fast algorithm for K-medoids clustering//Expert Systems with Applications. 2009. Vol. 36. Р. 3336-3341.
  • Lucasius C. B., Dane A. D., Kateman G. On K-Medoid Clustering of Large Data Sets with the Aid of a Genetic Algorithm: Background, Feasibility and Comparison//Analytical Chimica Acta. 1993. Vol. 282. Р. 647-669. DOI: DOI: 10.1007/s10732-006-7284-z
  • Zhang Q., Couloigner I. A New Efficient K-Medoid Algorithm for Spatial Clustering//ICCSA 2005, LNCS. 2005. Vol. 3482. Р. 181-189. DOI: 10.1007/11424857_20.
  • Sheng W., Liu X. A Genetic K-Medoids Clustering Algorithm//Journal of Heuristics. 2004. Vol. 12, iss. 6. Р. 447-466. DOI: DOI: 10.1007/s10732-006-7284-z
  • Cooper L. Location-allocation problem//Oper. Res. 1963. Vol. 11. Р. 331-343, DOI: DOI: 10.1287/opre.11.3.331
  • Arthur D., Vassilvitskii S. k-Means++: the Advantages of Careful Seeding//Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. 2007. Р. 1027-1035. DOI: DOI: 10.1.1.360.7427
  • Mishra N., Oblinger D., Pitt L. Sublinear time approximate clustering//12th SODA. 2001. Р. 439-447.
  • StreamKM: A Clustering Algorithm for Data Streams/M. R. Ackermann //J. Exp. Algorithmics. 2012. Vol. 17. Article 2.4. DOI: DOI: 10.1145/2133803.2184450/
  • A parallel clustering method combined information bottleneck theory and centroid-based clustering/Zh. Sun //The Journal of Supercomputing. 2014. Vol. 69, iss. 1. Р. 452-467. DOI: DOI: 10.1007/s11227-014-1174-1
  • Alp O., Erkut E., Drezner Z. An Efficient Genetic Algorithm for the p-Median Problem//Annals of Operations Research. 2003. Vol. 122, iss. 1-4. Р. 21-42. DOI: DOI: 10.1023/A:1026130003508
  • Neema M. N., Maniruzzaman K. M., Ohgai A. New Genetic Algorithms Based Approaches to Continuous p-Median Problem//Netw. Spat. Econ. 2011. Vol. 11. Р. 83-99. DOI: DOI: 10.1007/s11067-008-9084-5
  • Kuehn A. A., Hamburger M. J. A heuristic program for locating warehouses//Management Science. 1963. Vol. 9, iss. 4. Р. 643-666. DOI:10.1287/mnsc.9.4.643.
  • Задача классификации электронной компонентной базы/Л. А. Казаковцев .//Вестник СибГАУ. 2014. № 4(56). С. 55-61.
  • Казаковцев Л. А. Детерминированный алгоритм для задачи k-средних и k-медоид//Системы управления и информационные технологии. 2015. № 59. С. 95-99.
  • Казаковцев Л. А., Ступина А. А., Орлов В. И. Модификация генетического алгоритма с жадной эвристикой для непрерывных задач размещения и классификации//Системы управления и информационные технологии. 2014. № 2(56). С. 35-39.
  • Modified Genetic Algorithm with Greedy Heuristic for Continuous and Discrete p-Median Problems/L. A. Kazakovtsev //Facta Universitatis Series Mathematics and Informatics. 2015. Vol. 30, iss. 1. Р. 89-106.
  • Antamoshkin A. N. Brainware for Searchal Pseudoboolean Optimization//Transactions of the Tenth Prague Conference Czechoslovak Academy of Sciences Volume. 1988. Р. 203-206. DOI: DOI: 10.1007/978-94-009-3859-5_16
  • Казаковцев Л. А. Параллельный алгоритм случайного поиска с адаптацией для систем с распределенной памятью//Системы управления и информационные технологии. 2012. № 3(49). С. 11-15.
  • Kazakovtsev L. A. Random Constrained Pseudo-Boolean Optimization Algorithm for Multiprocessor Systems and Clusters//ICUMT 2012, International Congress on Ultra-Modern Telecommunications. S-Petersburg: IEEE Press, 2012. Р. 650-656. DOI: DOI: 10.1109/ICUMT.2012.6459711
  • Antamoshkin A. N., Kazakovtsev L. A. Random Search Algorithm for the p-Median Problem//Informatica, 2013. Vol. 37, iss. 3. Р. 267-278.
  • Антамошкин А. Н., Казаковцев Л. А. Применение метода изменяющихся вероятностей для задач размещения на сети//Вестник СибГАУ. 2014. № 5(57). С. 10-19.
  • Антамошкин А. Н., Казаковцев Л. А. Алгоритм случайного поиска для обобщенной задачи Вебера в дискретных координатах//Информатика и системы управления. 2013. № 1. С. 87-98.
  • Patrick M. Murphy P. M., Aha D. W. UCI Repository of Machine Learning Databases . 1994. URL: http://www.cs.uci.edu/mlearn/mlrepository.html (дата обращения: 02.01.2015).
  • Akhmedova Sh. A., Semenkin E. S. New optimization metaheuristic based on co-operation of biology related algorithms//Вестник СибГАУ. 2013. № 4(50). С. 92-99.
  • Farahani R. Z., Hekmatfar M. (editors). Facility Location Concepts, Models, Algorithms and Case Studies. Springer-Verlag Berlin Heidelberg, 2009, 550 p.
  • Kazakovtsev L. A., Stupina A. A. Fast Genetic Algorithm with Greedy Heuristic for p-Median and k-Means Problems. IEEE 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), St.-Petersburg, October 6-8, 2014. 2014, P. 702-706.
  • Kazakovtsev L. A., Antamoshkin A. N. Genetic Algorithm wish Fast Greedy Heuristic for Clustering and Location Problems. Informatica. 2014, Vol. 38, Iss. 3, P. 229-240.
  • Deza M. M., Deza E. Encyclopedya of Distances. Springer Verlag. Berlin, Heilderberg, 2009, 590 p., DOI: DOI: 10.1007/978-3-642-00234-2_1
  • Trubin V. A. Kibernetika. 1978, Iss. 6, P. 67-70, DOI:(In Russ.) DOI: 10.1007/BF01070282/
  • Kaufman L., Rousseeuw P. J. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990, 342 p., DOI: 10.1002/9780470316801.ch1.
  • Park H. S., Jun C.-H. A simple and fast algorithm for K-medoids clustering. Expert Systems with Applications. 2009, Vol. 36, P. 3336-3341.
  • Lucasius C. B., Dane A. D., Kateman G. On K-Medoid Clustering of Large Data Sets with the Aid of a Genetic Algorithm: Background, Feasibility and Comparison. Analytical Chimica Acta. 1993, Vol. 282, P. 647-669, DOI: DOI: 10.1007/s10732-006-7284-z
  • Zhang Q., Couloigner I. A New Efficient K-Medoid Algorithm for Spatial Clustering. ICCSA 2005, LNCS. 2005, Vol. 3482, P. 181-189, DOI: DOI: 10.1007/11424857_20
  • Sheng W., Liu X. A Genetic K-Medoids Clustering Algorithm. Journal of Heuristics. 2004, Vol. 12, Iss. 6, P. 447-466, DOI: DOI: 10.1007/s10732-006-7284-z
  • Cooper L. Location-allocation problem. Oper. Res. 1963, Vol. 11, P. 331-343, DOI: 10.1287/opre.11.3.331.
  • Arthur D., Vassilvitskii S. k-Means++: the Advantages of Careful Seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. 2007, P. 1027-1035, DOI: DOI: 10.1.1.360.7427
  • Mishra N., Oblinger D., Pitt L. Sublinear time approximate clustering. 12th SODA. 2001, P. 439-447.
  • Ackermann M. R. et al. StreamKM: A Clustering Algorithm for Data Streams. J. Exp. Algorithmics. 2012, Vol. 17, Article 2.4, DOI: DOI: 10.1145/2133803.2184450/
  • Sun Zh., Fox G., Gu W., Li Zh. A parallel clustering method combined information bottleneck theory and centroid-based clustering. The Journal of Supercomputing. 2014, Vol. 69, Iss. 1, P. 452-467. DOI: DOI: 10.1007/s11227-014-1174-1
  • Alp O., Erkut E., Drezner Z. An Efficient Genetic Algorithm for the p-Median Problem. Annals of Operations Research. 2003, Vol. 122, Iss. 1-4, Р. 21-42. DOI: DOI: 10.1023/A:1026130003508
  • Neema M. N., Maniruzzaman K. M., Ohgai A. New Genetic Algorithms Based Approaches to Continuous p-Median Problem. Netw. Spat. Econ. 2011, Vol. 11, P. 83-99. DOI: DOI: 10.1007/s11067-008-9084-5
  • Kuehn A. A., Hamburger M. J. A heuristic program for locating warehouses. Management Science. 1963, Vol. 9, Iss. 4, P. 643-666, DOI: DOI: 10.1287/mnsc.9.4.643
  • Kazakovtsev L. A., Orlov V. I., Stupina A. A., Masich I. S. . Vestnnik SibGAU. 2014, No. 4(56), P. 55-61 (In Russ.).
  • Kazakovtsev L. A. . Sistemy upravleniya I informatsionnye tekhnokogii. 2015, No. 1(59), P. 95-99 (In Russ.).
  • Kazakovtsev L. A., Stupina A. A., Orlov V. I. . Sistemy upravleniya i informatsionnye tekhnokogii. 2014, No. 2(56), P. 35-39 (In Russ.).
  • Kazakovtsev L. A., Orlov V. I., Stupina A. A., Kazakovtsev V. L. Modified Genetic Algorithm with Greedy Heuristic for Continuous and Discrete p-Median Problems. Facta Universitatis Series Mathematics and Informatics. 2015, Vol. 30, Iss. 1, P. 89-106.
  • Antamoshkin A. N. Brainware for Searchal Pseudoboolean Optimization. Transactions of the Tenth Prague Conference Czechoslovak Academy of Sciences Volume. 1988, P. 203-206, DOI: DOI: 10.1007/978-94-009-3859-5_16
  • Kazakovtsev L. A. . Sistemy upravleniya I informatsionnye tekhnokogii. 2012, No. 3 (49), P. 11-15 (In Russ.).
  • Kazakovtsev L. A. Random Constrained Pseudo-Boolean Optimization Algorithm for Multiprocessor Systems and Clusters. ICUMT 2012, International Congress on Ultra-Modern Telecommunications. IEEE Press. S-Petersburg. 2012, P. 650-656, DOI: 10.1109/ICUMT.2012.6459711.
  • Antamoshkin A. N., Kazakovtsev L. A. Random Search Algorithm for the p-Median Problem. Informatica, 2013, Vol. 37, Iss. 3, P. 267-278.
  • Antamoshkin A. N., Kazakovtsev L. A. . Vestnik SibGAU. 2014, No. 5(57), P. 10-19 (In Russ.).
  • Antamoshkin A. N., Kazakovtsev L. A. . Informatika i systemy upravleniya. 2013, No. 1, P. 87-98 (In Russ.).
  • Patrick M. Murphy P. M., Aha D. W. UCI Repository of Machine Learning Databases. 1994. Available at: http://www.cs.uci.edu/mlearn/mlrepository. html (accessed 02.01.2015).
  • Akhmedova Sh. A., Semenkin E. S. New optimization metaheuristic based on cooperation of biology related algorithms. Vestnik SibGAU. 2013, No. 4(50), P. 92-99 (In Russ.).
Еще
Статья научная