Growth attributes and pigmentation of fenugreek under fluoride toxicity

Автор: Bhati J., Vijayvergia R., Kumar A.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.20, 2024 года.

Бесплатный доступ

Indiscriminate and exorbitant use of chemicals and other xenobiotics like fluoride (F) is increasing in everyday life. The present investigation aimed to assess the phytotoxic effects of F on fenugreek ( Trigonella foenum-graecum ). Seeds of fenugreek were treated with 2.5 mM, 5 mM, 7.5 mM, and 10 mM concentrations of F. Toxic effect of F was observed as a decrease with an overall poor health of the seedlings. The highest applied concentration of F (10 mM) was toxic to the extent that seeds were not germinated. After a slight increase, a reduction in the root-shoot length, root-shoot biomass, number of nodules, and fresh and dry weight of nodules was observed with increasing concentrations of F. Furthermore, leaf area and relative water content in the leaf showed a progressive reduction with an increment in F concentration. Plants treated with F showed that pigments like chlorophyll a, chlorophyll b, and total chlorophyll were decreased under F toxicity. Detrimental impacts of F toxicity were found to be highly significant (p=0.001) for nodule dry weight, leaf area, chlorophyll a, and, total chlorophyll content.

Еще

Anthocyanin, chlorophyll contents, fluoride toxicity, growth, trigonella foenum-graecum

Короткий адрес: https://sciup.org/143182397

IDR: 143182397

Список литературы Growth attributes and pigmentation of fenugreek under fluoride toxicity

  • Abdel-Barry, J. A., Abdel-Hassan, I. A., & Al-Hakiem, M. H. (1997). Hypoglycaemic and antihyperglycaemic effects of Trigonella foenum-graecum leaf in normal and alloxan induced diabetic rats. J. Ethnopharmacol., 58(3), 149-155.
  • Ambika, S., & Sumalatha, S. (2005). Fluoride-A Malady in Lingsugur Taluk, Raichur District, Karnataka. In: Environment and Toxicology (Ed.: A. Kumar), APH Publishing Corporation, New Delhi, pp. 43-46.
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol., 24(1), 1-15.
  • Banerjee, A., & Roychoudhury, A. (2020). Gibberellic acid-priming promotes fluoride tolerance in a susceptible indica rice cultivar by regulating the antioxidant and phytohormone homeostasis. J. Plant Growth Regul., 39, 1476-1487.
  • Banerjee, A., Singh, A., & Roychoudhury, A. (2021). Fluoride toxicity variably affects overall physiology and grain development in three contrasting rice genotypes, representing a potential biohazard. Environ. Sci. Pollut. Res., 28(30), 40220-40232.
  • Bhat, R. S., Aldbass, A. M., Alghamdia, J. M., Alonazia, M. A., & Al-Daihan, S. (2023). Trigonella foenum-graecum L. Seed germination under sodium halide salts exposure. Fluoride, 56(2), 169-179.
  • Bustingorri, C., Balestrasse, K. B., & Lavado, R. S. (2015). Effects of high arsenic and fluoride soil concentrations on soybean plants. Int. J. Exp. Bot. 84, 407-415.
  • Chakrabarti, S., & Patra, P. K. (2013). Effect of fluoride on superoxide dismutase activity in four common crop plants. Fluoride, 46(2), 59-62.
  • Domigan, N. M., Farnden, K. J., Robertson, J. G., & Monk, B. C. (1988). Characterization of the peribacteroid membrane ATPase of lupin root nodules. Arch. Biochem. Biophys., 264(2), 564-573.
  • Elloumi, N., Abdallah, F. B., Mezghani, I., Rhouma, A., Boukhris, M., & Tunisia, S. (2005). Effect of fluoride on almond seedlings in culture solution. Fluoride, 38(3), 193-198
  • Fina, B. L., Lupo, M., Dri, N., Lombarte, M., & Rigalli, A. (2016). Comparison of fluoride effects on germination and growth of Zea mays, Glycine max and Sorghum vulgare. J. Sci. Food Agric., 96(11), 3679-3687.
  • Ghaffar, S., Khan, I., Ahmad, M. A., Umar, T., Munir, I., Ahmad, M. N..... & Ahmad, T. (2020). Effect of fluoride on the physiology and growth indicators of maize (Zea mays L.). Fluoride, 53(3), 491-498.
  • Hong, B. D., Joo, R. N., Lee, K. S., Lee, D. S., Rhie, J. H., Min, S. W.....& Chung, D. Y. (2016). Fluoride in soil and plant. Korean J. Agric. Sci., 43(4), 522-536.
  • Joyard, J., Ferro, M., Masselon, C., Seigneurin-Berny, D., Salvi, D., Garin, J., & Rolland, N. (2009). Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant, 2(6), 1154-1180.
  • Kamaluddin, M., & Zwiazek, J. J. (2003). Fluoride inhibits root water transport and affects leaf expansion and gas exchange in aspen (Populus tremuloides) seedlings. Physiol. Plant., 117(3), 368375.
  • Kholiya, N., & Kumar, A. (2023). Phytotoxicity of chromium (VI) on germination, growth attributes and pigmentation in cluster bean. J. Stress Physiol. Biochem., 19(3), 94-101.
  • Kumar, A. (2020). Inorganic soil contaminants and their biological remediation. In: Plant Responses to Soil Pollution (Eds.: Singh, P., Singh, S. K., & Prasad, S. M.), Springer, USA, pp. 205-220.
  • Kumar, A., & Aery, N. C. (2016). Impact, metabolism, and toxicity of heavy metals in plants. In: Plant Responses to Xenobiotics (Eds.: Singh, A., Prasad, S. M., & Singh, R. P.), Springer, USA, pp. 141-176.
  • Kumar, A., & Aery, N. C. (2023). Biochemical changes, biomass production, and productivity of Triticum aestivum as a function of increasing molybdenum application. J. Plant Nutr., 46(10), 2351-2362.
  • Kumar, V., & Chopra, A. K. (2012). Fertigation effect of distillery effluent on agronomical practices of Trigonella foenum-graecum L. (Fenugreek). Environ. Monit. Assess., 184, 1207-1219.
  • Mackowiak, C. L., Grossl, P. R., & Bugbee, B. G. (2003). Biogeochemistry of fluoride in a plant-solution system. J. Environ. Qual., 32(6), 2230-2237.
  • Mali, M., & Aery, N. C. (2008). Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient solution. J. Plant Nutr., 31(11), 1867-1876.
  • Porter, J. R., & Sheridan, R. P. (1981). Inhibition of nitrogen fixation in alfalfa by arsenate, heavy metals, fluoride, and simulated acid rain. Plant Physiol., 68(1), 143-148.
  • Ram, A., Verma, P., & Gadi, B. R. (2014). Effect of fluoride and salicylic acid on seedling growth and biochemical parameters of watermelon (Citrullus lanatus). Fluoride, 47(1), 49-55.
  • Saleh, A. A., & Abdel-Kader, D. Z. (2003). Metabolic responses of two Helianthus annuus cultivars to different fluoride concentrations during germination and seedling growth stages. Egypt. J. Biol., 5(1), 43-54.
  • Sharma, R., Kumari, A., Rajput, S., Nishu, Arora, S., Rampal, R., & Kaur, R. (2019). Accumulation, morpho-physiological and oxidative stress induction
  • by single and binary treatments of fluoride and low molecular weight phthalates in Spirodela polyrhiza L. Schleiden. Sci. Rep., 9(1), 20006.
  • Singh, S., Singh, J., & Singh, N. (2013). Studies on the impact of fluoride toxicity on growth parameters of Raphanus sativus L. Indian J. Sci. Res., 4 (1), 6164.
  • Soam, S. K., & Agarval, P. K. (1990). Toxic influence of fluoride on development of root nodules, biomass, and productivity of Vicia faba Linn. and its amelioration with various doses of NPK. Sov. J. Ecol. 21(1), 37-40.
  • Stevens, D. P., McLaughlin, M. J., & Alston, A. M. (1998). Phytotoxicity of the fluoride ion and its uptake from solution culture by Avena sativa and Lycopersicon esculentum. Plant Soil, 200(2), 119129.
  • Tomar, S., & Aery, N. C. (2000). Effect of sodium fluoride on seed germination, early seedling growth and biochemical constitutents of wheat. J. Environ. Biol., 21(4), 333-336.
  • Treshow, M., & Harner, F. M. (1968). Growth responses of pinto bean and alfalfa to sublethal fluoride concentrations. Canad. J. Bot., 46(10), 1207-1210.
  • Trikha, S., & Chundawat, R. S. (2015). Impact of fluoride on growth and its accumulation in plant growth promoting rhizobacterial species. Am. Int. J. Res. Form. Appl. Nat. Sci., 13(1), 24-27.
  • Yadu, B., Chandrakar, V., Meena, R. K., & Keshavkant, S. (2017). Glycinebetaine reduces oxidative injury and enhances fluoride stress tolerance via improving antioxidant enzymes, proline and genomic template stability in Cajanus cajan L. S. Afr. J. Bot, 111, 68-75.
  • Yu, M. H. (1996). Effects of fluoride on growth and soluble sugars in germinating mung bean (Vigna radiata) seeds. Fluoride, 29, 3-6.
  • Zhang, H., Xu, Z., Guo, K., Huo, Y., He, G., Sun, H.....& Sun, G. (2020). Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis. Ecotoxicol. Environ. Saf., 202, 110856.
  • Zouari, M., Ahmed, C. B., Elloumi, N., Rouina, B. B., Labrousse, P., & Abdallah, F. B. (2016). Effects of irrigation water fluoride on relative water content, photosynthetic activity, and proline accumulation in young olive trees (Olea europaea L. Cv chemlali) in arid zones. Fluoride, 49(3), 366-372.
  • Zwiazek, J. J., & Shay, J. M. (1988). Sodium fluoride induced metabolic changes in jack pine seedlings. II. Effect on growth, acid phosphatase, cytokinins, and pools of soluble proteins, amino acids, and organic acids. Can. J. For. Res., 18(10), 13111317.
Еще
Статья научная