Growth modulation, photosynthetic attributes and proline accumulation led enhancement to Oryza sativa (L.) seedlings exposed to NaCl stress
Автор: Mir R.A., Husna K.T., Somasundaram R.
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 2 т.20, 2024 года.
Бесплатный доступ
One of the main environmental factors that limits plant performance and lowers production is soil salinity, such as NaCl stress. Therefore, to cultivate salt-tolerant crops, it is essential to understand the physiological aspects of plant to NaCl stress and use the natural genetic resource linked with salt tolerance. Rice is relatively a salt-sensitive crop that shows a significant variation in metabolic activities towards NaCl salt stress. In this view, the present investigation was carried out to find the NaCl stress tolerance of rice (ASD-16) variety. The whole experiment was accomplished in pot culture under varying NaCl concentrations (0, 25, 50, 75, and 100mM). The salt stress was imposed on the 13th days after sowing and sampling were done after five days of treatment i.e, 18th DAS. Salt stress results in a decline in growth traits, biomass production, and also reduction in carotenoids and soluble protein contents were observed with hike in NaCl treatments. However, Chlorophyll a, b, (a+b), proline contents, were found to be increased under increasing NaCl concentrations. Thus, enhancing pigment constituents and osmolytes accumulation provides salinity stress tolerance to rice seedlings.
Compatible solutes, growth, nacl stress, rice, pigment composition
Короткий адрес: https://sciup.org/143182782
IDR: 143182782
Список литературы Growth modulation, photosynthetic attributes and proline accumulation led enhancement to Oryza sativa (L.) seedlings exposed to NaCl stress
- AbdElgawad, H., G. Zinta, M.M. Hegab, R. Pandey, H. Asard, and W. Abuelsoud. (2016). High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in plant science. 7:276.
- Ahmad, W., C.M. Ayyub, M.A. Shehzad, K. Ziaf, M. Ijaz, A. Sher, T. Abbas, and J. Shafi. (2019). Supplemental potassium mediates antioxidant metabolism, physiological processes, and osmoregulation to confer salt stress tolerance in cabbage (Brassica oleracea L.). Horticulture, Environment, and Biotechnology. 60:853-869.
- Alves, R.d.C., D.R. Rossatto, et. al., (2021). Seed priming with ascorbic acid enhances salt tolerance in micro-tom tomato plants by modifying the antioxidant defense system components. Biocatalysis and Agricultural Biotechnology. 31:101927.
- Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1.
- Aryendu, Mir, RA, Kathiravan M, and R. Somasundaram. (2022a). Alleviating NaCl Stress by Improving Growth and Yield in Arachis hypogaea L. by Exogenous Application of Brassinolide and Paclobutrazol. Indian Journal of Natural Sciences. 13:46608-46619.
- Bates, L., R.a. Waldren, and I. Teare. (1973). Rapid determination of free proline for water-stress studies. Plant Soil. 39:205-207.
- Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
- Carvalho, M.E.A., F.A. Piotto, M.L. Nogueira, F.G. Gomes-Junior, H.M.C.P. Chamma, D. Pizzaia, and R.A. Azevedo. (2018). Cadmium exposure triggers genotype-dependent changes in seed vigor and germination of tomato offspring. Protoplasma. 255:989-999.
- Ceccarini, C., F. Antognoni, S. Biondi, A. Fraternale, G. Verardo, A. Gorassini, and V. Scoccianti. (2019). Polyphenol-enriched spelt husk extracts improve growth and stress-related biochemical parameters under moderate salt stress in maize plants. Plant Physiol. Biochem. 141:95-104.
- Chen, T., S. Shabala, Y. Niu, Z.-H. Chen, L. Shabala, H. Meinke, G. Venkataraman, A. Pareek, J. Xu, and M. Zhou. (2021). Molecular mechanisms of salinity tolerance in rice. The Crop Journal. 9:506-520.
- Chiconato, D.A., G.d.S.S. Junior, D.M.M. dos Santos, and R. Munns. (2019). Adaptation of sugarcane plants to saline soil. Environ. Exp. Bot. 162:201211.
- Das, S.K., J.K. Patra, and H. Thatoi. (2016). Antioxidative response to abiotic and biotic stresses in mangrove plants: A review. Int. Rev. Hydrobiol. 101:3-19.
- Fahad, S., M. Adnan, M. Noor, M. Arif, M. Alam, I.A. Khan, H. Ullah, F. Wahid, I.A. Mian, and Y. Jamal. (2019). Major constraints for global rice production. In Advances in rice research for abiotic stress tolerance. Elsevier. 1-22.
- Farooq, M., M. Hussain, A. Wakeel, and K.H. Siddique. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development. 35:461481.
- Frukh, A., T.O. Siddiqi, M.I.R. Khan, and A. Ahmad. (2020). Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiol. Biochem. 146:55-70.
- Hassan, A., S.F. Amjad, M.H. Saleem, H. Yasmin, M. Imran, M. Riaz, Q. Ali, F.A. Joyia, S. Ahmed, and S. Ali. (2021). Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi J. Biol. Sci. 28:4276-4290.
- Hassanpour, H., R.A. Khavari-Nejad, V. Niknam, F. Najafi, and K. Razavi. (2013). Penconazole induced changes in photosynthesis, ion acquisition and protein profile of Mentha pulegium L. under drought stress. Physiol. Mol. Biol. Plants. 19:489-498.
- Jini, D., and B. Joseph. (2017). Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Science. 24:97-108.
- Kamran, M., K. Xie, J. Sun, D. Wang, C. Shi, Y. Lu, W. Gu, and P. Xu. (2020). Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.). Ecotoxicol. Environ. Saf. 188:109877.
- Khosravinejad, F., R. Heydari, and T. Farboodnia. (2009). Effect of salinity on organic solutes contents in barley. Pakistan Journal of Biological Sciences: PJBS. 12:158-162.
- Kirk, J.T.O., and R.L. Allen. (1965). Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochem. Biophys. Res. Commun. 21:523-530.
- Liang, W., X. Ma, P. Wan, and L. Liu. (2018). Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 495:286-291.
- Mbarki, S., O. Sytar, A. Cerda, M. Zivcak, A. Rastogi, X. He, A. Zoghlami, C. Abdelly, and M. Brestic. (2018). Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. Salinity Responses and Tolerance in Plants, Volume 1: Targeting Sensory, Transport and Signaling Mechanisms:85-136.
- Mir, R.A., and, and R. Somasundaram. (2023). Salt Stress and tolerance mechanisms by plants: A Review. Iranian Journal of Plant Physiology. 13:4569-4587.
- Mir, R.A., and R. Somasundaram. (2020). Effect of NaCl stress on pigment composition, membrane integrity and proline metabolism of little millet (Panicum sumatrense L.) CO-4 variety. International Journal of Botany Studies,. 5:586-593.
- Mir, R.A., and R. Somasundaram. (2021a). Growth improvement and pigment composition in cowpea (Vigna unguiculata (L.) Walp.) by foliar spray of salicylic acid and ascorbic acid under NaCl stress. International Journal of Botany Studies. 6:490-496.
- Mir, R.A., R. Somasundaram, and R. Panneerselvam. (2019). Changes in antioxidant enzymes activities mitigates deleterious effects of ROS in Panicum miliaceum (L.) under drought stress. Journal of Stress Physiology & Biochemistry. 15:81-91.
- Nahar, K., M. Hasanuzzaman, and M. Fujita. (2016). Roles of osmolytes in plant adaptation to drought and salinity. Osmolytes and plants acclimation to changing environment: Emerging omics technologies:37-68.
- Naheed, R., H. Aslam, H. Kanwal, F. Farhat, M.I.A. Gamar, A.A. Al-Mushhin, D. Jabborova, M.J. Ansari, S. Shaheen, and M. Aqeel. (2021). Growth attributes, biochemical modulations, antioxidant enzymatic metabolism and yield in Brassica napus varieties for salinity tolerance. Saudi J. Biol. Sci. 28:5469-5479.
- Noreen, S., M. Sultan, M.S. Akhter, K.H. Shah, U. Ummara, H. Manzoor, M. Ulfat, M.N. Alyemeni, and P. Ahmad. (2021). Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. Plant Physiol. Biochem. 158:244-254.
- Osman, M.E., A.A. Mohsen, A.A. Nessim, M.S. El-Saka, and W. Mohamed. (2019). Evaluation of biochar as a soil amendment for alleviating the harmful effect of salinity on Vigna unguiculata (L.) Walp. Egyptian Journal of Botany. 59:617-631.
- Ramel, F., S. Birtic, C. Ginies, L. Soubigou-Taconnat, C. Triantaphylides, and M. Havaux. (2012). Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proceedings of the National Academy of Sciences. 109:5535-5540.
- Sharma, P.K., and D.O. Hall. (1991). Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. J. Plant Physiol. 138:614-619.
- Shrivastava, P., and R. Kumar. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22:123-131.
- Sofy, M.R., N. Elhawat, and T. Alshaal. (2020). Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicol. Environ. Saf. 200:110732.
- Taibi, K., F. Taibi, L.A. Abderrahim, A. Ennajah, M. Belkhodja, and J.M. Mulet. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S. Afr. J. Bot. 105:306-312.
- Tanveer, K., S. Gilani, Z. Hussain, R. Ishaq, M. Adeel, and N. Ilyas. (2020). Effect of salt stress on tomato plant and the role of calcium. J. Plant Nutr. 43:2835.
- Yang, Y., and Y. Guo. (2018). Unraveling salt stress signaling in plants. Journal of integrative plant biology. 60:796-804.