H-Detect: алгоритм раннего выявления гидроцефалии

Автор: Дев Балони, Дханвир Сингх Рай, П.Г. Сивагаминатан, Харишчандер Анандарам, Мадхур Таплиял, Капил Джоши

Журнал: Информатика и автоматизация (Труды СПИИРАН).

Рубрика: Искусственный интеллект, инженерия данных и знаний

Статья в выпуске: Том 23 № 2, 2024 года.

Бесплатный доступ

Гидроцефалия - это заболевание центральной нервной системы, которое чаще всего поражает младенцев и детей ясельного возраста. Оно начинается с аномального накопления спинномозговой жидкости в желудочковой системе головного мозга. Следовательно, жизненно важной становится ранняя диагностика, которая может быть выполнена с помощью компьютерной томографии (КТ), одного из наиболее эффективных методов диагностики гидроцефалии (КТ), при котором становится очевидным увеличение желудочковой системы. Однако большинство оценок прогрессирования заболевания основаны на оценке рентгенолога и физических показателях, которые являются субъективными, отнимающими много времени и неточными. В этой статье разрабатывается автоматическое прогнозирование с использованием фреймворка H-detect для повышения точности прогнозирования гидроцефалии. В этой статье используется этап предварительной обработки для нормализации входного изображения и удаления нежелательных шумов, что может помочь легко извлечь ценные признаки. Выделение признаков осуществляется путем сегментации изображения на основе определения границ с использованием треугольных нечетких правил. Таким образом, выделяется точная информация о природе ликвора внутри мозга. Эти сегментированные изображения сохраняются и снова передаются алгоритму CatBoost. Обработка категориальных признаков позволяет ускорить обучение. При необходимости детектор переобучения останавливает обучение модели и, таким образом, эффективно прогнозирует гидроцефалию. Результаты демонстрируют, что новая стратегия H-detect превосходит традиционные подходы.

Еще

Гидроцефалия, компьютерная томография (КТ), метод H-детекции, спинномозговая жидкость (ликвор), треугольные нечеткие правила, обнаружение краев

Короткий адрес: https://sciup.org/14129173

IDR: 14129173   |   DOI: 10.15622/ia.23.2.7

Статья