Heat-tolerant pepper cultivar exhibits high rates of chlorophyll, photosynthesis, stomatal conductance and transpiration in heat stress regime at fruit developing stage

Автор: Rajametov Sherzod Nigmatullayevich, Cho Myeong-Cheoul, Lee Kwanuk, Jeong Hyo-Bong, Yang Eun-Young

Журнал: Овощи России @vegetables

Рубрика: Физиология и биохимия растений

Статья в выпуске: 6 (62), 2021 года.

Бесплатный доступ

Relevance. Abiotic stress, as heat, significantly affect plant and floral organs growth and development, fruit set, productivity, the quality, and survival of crops. Heat injury occurs when plants are exposed to these temperatures for a long period of time. Depending on the intensity and duration of exposure to the high temperatures, photosynthesis, respiration, membrane integrity, water relations and the hormone balance of the plants may affected. Material and methods. In this study used the commercial pepper cultivar “NW Bigarim” (HT37) released in South Korea and accessions “Kobra” (HTl) and “Samchukjaere” (HT7) selected as heat tolerant and susceptible, respectively. Total chlorophyll index and photosynthetic activities measured using a SPAD meter (Konica, Japanland portable photosynthesis measurement system (LI-6400,1I-COR Bioscience, Lincoln, NE, USA), respectively. Results. To evaluate the positive effects of high temperature regime (40/28°C day/night, 14/10-h light/dark cycle) on the response of photosynthetic parameters in pepper plants with different heat susceptibility, we measured the total chlorophyll content (CHl) and photosynthetic activities such as photosynthesis (Pn), stomatal conductance to H2O (Gs) and transpiration rate (Tr) in a heat-tolerant (HT1) and -susceptible cultivars (HT7) in comparison with released cultivar (HT37) at fruit development stage. Heat-tolerant cultivars showed higher and more stable index of the CHL, Pn, Gs and Tr than those in heat-sensitive cultivars for 14 days of heat treatment (HT) period. However, the initial index of Pn, Gs and Tr showed significant alteration among pepper plants regardless of thermotolerance rate before HT on day 0 and day 7 after recovery at normal treatment condition (NT) except for CHL, meaning that plants response to high temperature regime is different from that in normal condition. These results suggest that constant high rates of Pn, Gs and Tr as well as of CHL in heat stress condition periods confer to avoid from heat injury during reproductive growth stages.


Pepper, cultivar, tolerance, susceptible, high temperature, chlorophyll content, photosynthesis, stomatal conductance to h2o, transpiration

Короткий адрес: https://sciup.org/140290370

IDR: 140290370   |   DOI: 10.18619/2072-9146-2021-6-5-9

Список литературы Heat-tolerant pepper cultivar exhibits high rates of chlorophyll, photosynthesis, stomatal conductance and transpiration in heat stress regime at fruit developing stage

  • Root T.L., Price J.T., Hall K.R., Schneider S.H., Rosenzweigk C., Pounds J.A. Fingerprints of global warming on wild animals and plants. Nature. 2003;421(2):57-60. https://doi.org/10.1038/nature01333
  • Vuuren D.P.V., Meinshausenc M., Plattnerd G.K., Joose F., Strassmanne K.M., Smithg S.J., Temperature increase of 21st century mitigation scenarios. Proc. Natl. Acad. Sci. 2008;105(40):15258-15262. https://doi.org/10.1073/pnas.0711129105
  • Beena R., Veena V., Narayankutty M.C. Evaluation of rice genotypes for acquired thermo-tolerance using Temperature Induction Response technique. Oryza. Int. J. Rice. 2018;55(2):285-291. https://doi.org/10.5958/2249-5266.2018.00035.8
  • Erickson A.N., Markhart A.H., Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ. 2002;25:123-130. https://doi.org/10.1046/j.0016-8025.2001.00807.x.
  • Heuvelink E., Korner O. Parthenocarpic fruit growth reduces yield fluctuation and blossom-end rot in sweet pepper. Ann. Bot. 2001;88:69-74. https://doi.org/10.1006/anbo.2001.1427
  • Rajametov S., Yang E.Y., Cho M.C., Bong J.H., Chae S.Y., Chae W.B. Heat-tolerant hot pepper exhibits constant photosynthesis via increased transpiration rate, high proline content and fast recovery in heat stress condition. Sci. Rep. 2021;(11):14328. https://doi.org/10.1038/s41598-021-93697-5
  • Pagamas P., Nawata E. Effect of high temperature during the seed development on quality and chemical composition of chili pepper seed. Jpn. J. Trop. Agr. 2007;(51):22-29.
  • Park E., Hong S.J., Lee A.Y., Park J., Cho B.K., Kim G. Phenotyping of Low-Temperature Stressed Pepper Seedlings Using Infrared Thermography. J. Biosyst. Eng. 2017;42(3):163-169. https://doi.org/10.1053/JBE.2017.42.3.163.
  • Rajametov S, Yang E.Y., Bong J.H., Cho M.C., Chae S.Y., Paudel N. Heat treatment in two tomato cultivars: a study of the effect on physiological and growth recovery. J. Hortic. 2021;7(5):119. https://doi.org/10.3390/horticulturae7050119
  • Gisbert-Mullor R., Padilla Y.G., Martínez-Cuenca M., L´opez-Galarza S., Calatayud A. Suitable rootstocks can alleviate the effects of heat stress on pepper plants. Sci. Hort. 2021;(290):110529. https://doi.org/10.1016/j.scienta.2021.110529
  • Camejo D., Rodríguez,P., Morales M.A., Dell’Amico J.M., Torrecillas A., Alarcón J.J. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 2005;(162):281-289. https://doi.org/10.1016/j.jplph.2004.07.014
  • Bhattarai S., Harvey J.T., Djidonou D., Leskovar D.I. Exploring Morpho-Physiological Variation for Heat Stress Tolerance in Tomato. Plants. 2021;(10):347. https://doi.org/10.3390/plants10020347
  • Zhou R., Yu X., Kjær K.H., Rosenqvist E., Ottosen C.O., Wu Z. Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Envir. Exp. Bot. 2015;(118):1-11. https://doi.org/10.1016/j.envexpbot.2015.05.006
  • Camejo D., Torres W. High temperature effects on tomato (Lycopericon esculetinum) pigment and protein content and cellular viability. Cult. Trop. 2001;(22):13-17.
  • Scafaro A.P., Haynes P.A., Atwell B.J. Physiological and molecular changes in Oryza meridionalis Ng. a heat tolerant spices of wild rice. J. Exp. Bot. 2010;(61):191-202. https://doi.org/10.1093/jxb/erp294.
  • Zhou R., Kjær K.H, Rosenqvist E., Yu X., Wu Z., Ottosen C.O. Physiological response to heat stress during seedling and anthesis stage in tomato genotypes differing in heat tolerance. J Agron. Crop Sci. 2017;(203):68-80. https://doi.org/10.1111/jac.12166
  • Hussain T., Ayyub C.M., Amjad M., Hussain M. Analysis of morpho- physiological changes occurring in chilli genotypes (Capsicum spp.) under high temperature conditions. Pak. J. Agri. Sci. 2021;58(1):43-50. https://doi.org/10.21162/PAKJAS/21.7185.
  • Ghai N., Kaur J., Jindal S.K., Dhaliwal M.S., Pahwa K. Physiological and biochemical response to higher temperature stress in hot pepper (Capsicum annuum L.). J. Appl. Nat. Sci. 2016;8(3):1133 - 1137. https://doi.org/10.31018/jans.v8i3.930
  • Komayama K., Khatoon M., Takenaka D., Horie J., Yamashita A., Yoshioka M., Nakayama Y., Yoshida M., Ohira S., Morita N., Velitchkova M., Enami I., Yamamoto Y. Quality control of photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids. Biochem. Biophys. Acta. 2007;(1767):838-46.
  • Camejo D., Jiménez A., Alarcón J.J., Torres W., Gómez J. M., Sevilla F. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct. Plant Biol. 2006;(33):177-187.
  • Taiz L., Zeiger E., Moller I.M., Murphy A. Plant Physiology and Development. Sinauer Associates, Massachusetts. 2015. 761p.
  • Cornic G. Drought stress inhibits photosynthesis by decreased stomatal aperture not by affecting ATP synthesis. Trends Plant Sci. 2000;(5):187-88. https://doi.org/10.1016/51360-1385(00)01625-3
  • Todorov D., Karanov E., Smith A.R., Hall M.A. Chlorophyllase activity and chlorophyll content in wild and mutant plants of Arabidopsis thaliana. Biol. Plant. 2003;(46):125- 127. https://doi.org/10.1023/A:1024896418839.
  • Sharkey T.D., Zhang R. High temperature effects on electron and proton circuits of photosynthesis. J. Integr. Plant Biol. 2010;(52):712-722. https://doi.org/10.1111/j.1744-7909.2010.00975.x.
  • Vijayakumar A., Beena R. Impact of Temperature Difference on the Physicochemical Properties and Yield of Tomato: A Review. Chem. Sci. Rev. Lett. 2020;9(35):665-681. https://doi.org/10.1016/j.heliyon.2021.e05988
  • Oh S.Y., Koh S.C. Fruit development and quality of hot pepper (Capsicum annuum L.) under various temperature regimes. Hortic. Sci. Technol. 2019;37(3):313-321. https://doi.org/10.7235/HORT.20190032
  • Wahid A., Gelani S., Ashraf M., Foolad M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007;(61):199-223. https://doi.org/s://doi:10.1016/j.envexpbot.2007.05.011
  • Zhou R., Yu X., Wen J., Jensen N.B., dos Santos T.M., Wu Z., Rosenqvist E., Ottosen C.O. Interactive effects of elevated CO2 concentration and combined heat and drought stress on tomato photosynthesis. BMC Plant Biol. 2020;(20):1-12. https://doi.org/10.1186/s12870-020-02457-6.
  • Jahan M.S., Wang Y., Shu S., Zhong M., Chen Z., Wu J., Sun J., Guo S. Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Sci. Hortic. 2019;(247):421-429. https://doi.org/10.1016/j.scienta.2018.12.047
  • Li X., Ahammed G.J., Zhang Y.Q., Zhang G.Q., Sun Z.H., Zhou J., Zhou Y.H., Xia X.J., Yu J.Q., Shi K. Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants. Plant Biol. 2014;(17):81-89. https://doi.org/10.1111/plb.12211
  • Camposa H., Trejob C., Valdiviab C.B.P., Navab R.G., Conde-Martínezb F.V., Cruz-Ortegac M.R. Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery. Environ. Exp. Bot. 2014;(98):56-64. https://doi.org/10.1016/j.envexpbot.2013.10.015
Статья научная