Heavy metals as impurities in the bayer production cycle of the aluminum hydroxide from sierra leone bauxite. Preliminary study

Автор: Dobra Gheorghe, Iliev Sorin, Cotet Lucian, Boiangiu Alina, Hulka Iosif, Kim Lidia, Catrina Gina Alina, Filipescu Laurentiu

Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu

Статья в выпуске: 2 т.14, 2021 года.

Бесплатный доступ

This paper is reporting the data of a preliminary study on heavy metals distribution in the fluid and solid phases involved in dry and classified aluminium hydroxide production through Bayer process. For heavy metals released in the fluid phases, the main source of contamination is the bauxite through its mineralogical phases soluble or insoluble in alkaline solution. It was shown that predominant way to transfer contaminating elements in aluminium hydroxide particles is the occlusion of very fine particles coming from mineralogical phases of bauxite residue. New born mineralogical phases from bauxite residue, like poor crystallized sodalite and cancrinite, are the most active occlusion contaminants.

Еще

Aluminium hydroxide, heavy metals, occlusion, bauxite, bauxite residue, bayer process

Короткий адрес: https://sciup.org/146282214

IDR: 146282214   |   DOI: 10.17516/1999-494X-0296

Список литературы Heavy metals as impurities in the bayer production cycle of the aluminum hydroxide from sierra leone bauxite. Preliminary study

  • Dobra G., Filipescu L., Anghelovici N., Alistarh V., Iliev S. Bauxite residue safety disposal and friendly environmental processing permanent care at Vimetco Alum SA Tulcea, Bauxite Residue Valorisation and Best Practices Conference, Leuwen 2015, 47-52.
  • Dobra G., Kiselev A., Filipescu L., Alistarh V., Anghelovici N., Iliev S. Full analysis of Sierra Leone bauxite and possibilities of bauxite residue filtration. J. Sib. Fed. Univ. Eng. Technol., 2016, 9(5), 643-656.
  • Dobra G., Filipescu L., Anghelovici N., Alistarh V., Iliev S., Cotet L. Bauxite residue safety disposal and possibilities to further utilization. Part 1. Acid soils remediation, J. Sib. Fed. Univ. Eng. Technol, 2017, 10(1), 6-21.
  • Cui Y., Chen J., Zhang Y., Peng D., Hung T., Sun C. pH-Dependent Leaching Characteristics of Major and Toxic Elements from Red Mud, Int J. Environ Res Public Health 2019, 16(11): 2046, DOI: 10.3390/ijerph16112046
  • Niculescu M., Ionita A.D., Filipescu L. Chromium Adsorption on Neutralized Red Mud, Rev. Chimie (Bucuresti) 2010, 61(2), 200-205.
  • Niculescu M., Ionita A.D., Simion D., Crudu M., Filipescu L. Red mud - new material for tannery residual chromium binding, UPB Sci. Bull. Series Chemistry 2010, 72 (3), 99-114.
  • Rubinos D.A., Barral M.T. Fractionation and mobility of metals in bauxite red mud, Environmental Science and Pollution Research January 2013, DOI: 10.1007/s11356-013-1477-1474.
  • Micó C., Peris M., Sánchez J., Recatalá L. Heavy metal content of agricultural soils in a Mediterranean semiarid area: the Segura River Valley (Alicante, Spain), Spanish Journal of Agricultural Research 2006, 4(4), 363-372.
  • Tóth G., Hermann T., Da Silva M.R., Montanarella L. Heavy metals in agricultural soils of the European Union with implicationsfor food safety, Environment International 2016, 88, 299-309.
  • Dobra G., Iliev S., Anghelovici N., Cotet L., Filipescu L. Impurities accumulation on the surface of alumina hydrate particles in Bayer technology, Rev Chimie (Bucharest) 2019, 70 (2), 355360.
  • Vind J., Alexandri A., Vassiliadu W., Panias D. Distribution of Selected Trace Elements in the Bayer Process, Metals 2018, 8(5), 32.
  • Éimear A., Deady E.A., Mouchos E., Goodenough E., Williamson B.J., Wall F. A review of the potential for rare-earth element resources from European red muds: examples from Seydi§ehir, Turkey and Parnassus-Giona, Greece.
Еще
Статья научная