Hyperspectral image segmentation using dimensionality reduction and classical segmentation approaches

Автор: Myasnikov Evgeny Valerevich

Журнал: Компьютерная оптика @computer-optics

Рубрика: Image processing, pattern recognition

Статья в выпуске: 4 т.41, 2017 года.

Бесплатный доступ

Unsupervised segmentation of hyperspectral satellite images is a challenging task due to the nature of such images. In this paper, we address this task using the following three-step procedure. First, we reduce the dimensionality of the hyperspectral images. Then, we apply one of classical segmentation algorithms (segmentation via clustering, region growing, or watershed transform). Finally, to overcome the problem of over-segmentation, we use a region merging procedure based on priority queues. To find the parameters of the algorithms and to compare the segmentation approaches, we use known measures of the segmentation quality (global consistency error and rand index) and well-known hyperspectral images.

Еще

Hyperspectral image, segmentation, clustering, watershed transform, region growing, region merging, segmentation quality measure, global consistency error, rand index

Короткий адрес: https://sciup.org/140228644

IDR: 140228644   |   DOI: 10.18287/2412-6179-2017-41-4-564-572

Список литературы Hyperspectral image segmentation using dimensionality reduction and classical segmentation approaches

  • Fu, K.S. A survey on image segmentation/K.S. Fu, J.K. Mui//Pattern Recognition. -1981. -Vol. 13, Issue 1. -P. 3-16. - DOI: 10.1016/0031-3203(81)90028-5
  • Berthier, M. Binary codes K-modes clustering for HSI segmentation/M. Berthier, S. El Asmar, C. Frélicot//2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP). -2016. -P. 1-5. - DOI: 10.1109/IVMSPW.2016.7528190
  • Cariou, C. Unsupervised nearest neighbors clustering with application to hyperspectral images/C. Cariou, K. Chehdi//IEEE Journal of Selected Topics in Signal Processing. -2015. -Vol. 9, Issue 6. -P. 1105-1116. - DOI: 10.1109/JSTSP.2015.2413371
  • Noyel, G. Morphological segmentation of hyperspectral images/G. Noyel, J. Angulo, D. Jeulin//Image Analysis and Stereology. -2007. -Vol. 26, Issue 3. -P. 101-109. - DOI: 10.5566/ias.v26.p101-109
  • Tarabalka, Y. Segmentation and classification of hyperspectral images using watershed transformation/Y. Tarabalka, J. Chanussot, J.A. Benediktsson//Pattern Recognition. -2010. -Vol. 43, Issue 7. -P. 2367-2379. - DOI: 10.1016/j.patcog.2010.01.016
  • Goretta, N. An iterative hyperspectral image segmentation method using a cross analysis of spectral and spatial information/N. Goretta, G. Rabatel, C. Fiorio, C. Lelong, J.M. Roger//Chemometrics and Intelligent Laboratory Systems. -2012. -Vol. 117, Issue 1. -P. 213-223. - DOI: 10.1016/j.chemolab.2012.05.004
  • Kuznetsov, A.V. A comparison of algorithms for supervised classification using hyperspectral data/A.V. Kuznetsov, V.V. Myasnikov//Computer Optics. -2014. -Vol. 38(3). -P. 494-502.
  • Denisova, A.Yu. Anomaly detection for hyperspectral imaginary/A.Yu. Denisova, V.V. Myasnikov//Computer Optics. -2014. -Vol. 38(2). -P. 287-296.
  • Richards, J.A. Remote sensing digital image analysis: An introduction/J.A. Richards, X. Jia, D.E. Ricken, W. Gessner. -New York: Springer-Verlag Inc., 1999. -363 p. -ISBN: 3-540-64860-7.
  • Wang, J. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis/J. Wang, C.-I. Chang//IEEE Transactions on Geoscience and Remote Sensing. -2006. -Vol. 44, Issue 6. -P. 1586-1600. - DOI: 10.1109/TGRS.2005.863297
  • Myasnikov, E.V. Nonlinear mapping methods with adjustable computational complexity for hyperspectral image analysis/E.V. Myasnikov//Proceedings of SPIE. -2015. -Vol. 9875. -987508. - DOI: 10.1117/12.2228831
  • Myasnikov, E. Evaluation of stochastic gradient descent methods for nonlinear mapping of hyperspectral data/E. Myasnikov//In: Proceedings of ICIAR 2016. -2016. -P. 276-283. - DOI: 10.1007/978-3-319-41501-7_31
  • Sun, W. UL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification/W. Sun, A. Halevy, J.J. Benedetto, W. Czaja, C. Liu, H. Wu, B. Shi, W. Li//ISPRS Journal of Photogrammetry and Remote Sensing. -2014. -Vol. 89. -P. 25-36. - DOI: 10.1016/j.isprsjprs.2013.12.003
  • Kim, D.H. Hyperspectral image processing using locally linear embedding/D.H Kim, L.H. Finkel//First International IEEE EMBS Conference on Neural Engineering. -2003. -P. 316-319. - DOI: 10.1109/CNE.2003.1196824
  • Doster, T. Building robust neighborhoods for manifold learning-based image classification and anomaly detection/T. Doster, C.C. Olson//Proceedings of SPIE. -2016. -Vol. 9840. -984015. - DOI: 10.1117/12.2227224
  • Lloyd, S.P. Least squares quantization in PCM/S.P. Lloyd//IEEE Transactions on Information Theory. -1982. -Vol. 28, Issue 2. -Vol. 129-137. - DOI: 10.1109/TIT.1982.1056489
  • Arthur, D. K-means++: The advantages of careful seeding/D. Arthur, S. Vassilvitskii//SODA'07 Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. -2007. -P. 1027-1035. - DOI: 10.1145/1283383.1283494
  • Beucher, S. Use of watersheds in contour detection/S. Beucher, C. Lantuejoul//International Workshop Image Processing, Real-Time Edge and Motion Detection/Estimation. -1979.
  • Zimichev, E.A. Spectral-spatial classification with k-means++ particional clustering/E.A. Zimichev, N.L. Kazanskiy, P.G. Serafimovich//Computer Optics. -2014. -Vol. 38(2). -P. 281-286.
  • Huang, Q. Quantitative methods of evaluating image segmentation/Q. Huang, B. Dom//Proceedings of IEEE International Conference on Image Processing. -1995. -Vol. 3. -P. 3053-3056. - DOI: 10.1109/ICIP.1995.537578
  • Martin, D. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics/D. Martin, C. Fowlkes, D. Tal, J. Malik//Proceedings of Eighth IEEE International Conference on Computer Vision. -2001. -Part II. -P. 416-423. - DOI: 10.1109/ICCV.2001.937655
  • Monteiro, F.C. Performance evaluation of image segmentation/F.C. Monteiro, A.C. Campilho//In: Proceedings of the ICIAR 2006. -2006. -Vol. 4141. -P. 248-259. - DOI: 10.1007/11867586_24
  • Unnikrishnan, R.A. Measure for objective evaluation of image segmentation algorithms/R.A. Unnikrishnan, C. Pantofaru, M. Hebert//CVPR Workshops. -2005. -34. - DOI: 10.1109/CVPR.2005.390
  • Rand, W.M. Objective criteria for the evaluation of clustering methods/W.M. Rand//Journal of the American Statistical Association. -1971. -Vol. 66, Issue 336. -P. 846-850. - DOI: 10.2307/2284239
  • Monteiro, F.C. Distance measures for image segmentation evaluation/F.C. Monteiro, A.C. Campilho//Numerical Analysis and Applied Mathematics (ICNAAM 2012), AIP Conference Proceedings. -2012. -Vol. 1479. -P. 794-797. - DOI: 10.1063/1.4756257
  • Meilă, M. Comparing clusterings by the variation of information/M. Meilă//In: Learning Theory and Kernel Machines/ed. by B. Schölkopf, M.K. Warmuth. -2003. -2777. - DOI: 10.1007/978-3-540-45167-9_14
  • Hyperspectral remote sensing scenes . -URL: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.
Еще
Статья научная