Искусственный интеллект, инженерия данных и знаний. Рубрика в журнале - Информатика и автоматизация (Труды СПИИРАН)

Публикации в рубрике (102): Искусственный интеллект, инженерия данных и знаний
все рубрики
Эффективная реализация гамматон-фильтров на основе неравнополосного косинусно-модулированного банка фильтров

Эффективная реализация гамматон-фильтров на основе неравнополосного косинусно-модулированного банка фильтров

Максим Игоревич Порхун, Максим Иосифович Вашкевич

Статья

В работе представлена эффективная реализация банка гамматон-фильтров (БГФ) на основе неравнополосного косинусно-модулированного банка фильтров (НКМБФ), использующего фазовое преобразование. Рассмотрены примеры практических задач, в которых применяется банк гамматон-фильтров, проанализированы его основные особенности и недостатки. Приведено описание равнополосного косинусно-модулированного банка фильтров, а также показан процесс синтеза НКМБФ из его равнополосного аналога при помощи фазового преобразования. Разработан оптимизационный метод проектирования фильтра-прототипа НКМБФ для аппроксимации частотных характеристик БГФ. В основе метода лежит мультипликативная модель импульсной характеристики фильтра-прототипа, использующая логистические сигмоидальные функции. Суть предлагаемого метода заключается в оптимизации фильтра-прототипа с целью минимизации среднеквадратичной ошибки между АЧХ БГФи НКМБФ для каждого канала. Выполнена программная реализация на языке Python с использованием библиотеки PyTorch. Проведены экспериментальные исследования предложенного метода. Результаты экспериментов показали, что НКМБФ можно использовать для аппроксимации частотных характеристик БГФ, а результирующая АЧХ имеет монотонные спады за счёт использования логистических сигмоидальных функций. Проведён анализ зависимости результирующей ошибки аппроксимации частотных характеристик банка гамматон-фильтров от количества сигмоид, используемых для синтеза фильтра-прототипа НКМБФ на базе мультипликативной модели импульсной характеристики. Выполнен анализ вычислительной сложности НКМБФ, показано как зависит число операций сложения и умножения от длины импульсной характеристики фильтра-прототипа и числа каналов банка фильтров. Сделан вывод, что использование НКМБФ для реализации банка гамматон-фильтров позволяет существенно уменьшить вычислительные затраты на реализацию гамматон-фильтров по сравнению с прямой реализацией.

Бесплатно

Эффективный алгоритм классификации естественного языка обнаружения повторяющихся контролируемых признаков

Эффективный алгоритм классификации естественного языка обнаружения повторяющихся контролируемых признаков

Сауд Алтаф, Sofia Iqbal, Muhammad Waseem Soomro

Статья

Эта статья фокусируется на том, чтобы уловить смысл значения текстовых функций понимания естественного языка (NLU) для обнаружения дубликатов неконтролируемых признаков. Особенности NLU сравниваются с лексическими подходами для доказательства подходящей методики классификации. Подход трансфертного обучения используется для обучения извлечению признаков в задаче семантического текстового сходства (STS). Все функции оцениваются с помощью двух типов наборов данных, которые принадлежат отчетам об ошибках Bosch и статьям Википедии. Цель данного исследованияструктурировать последние исследовательские усилия путем сравнения концепций NLU для описания семантики текста и применения их к IR. Основным вкладом данной работы является сравнительное исследование измерений семантического сходства. Экспериментальные результаты демонстрируют результаты функции Term Frequency–Inverse Document Frequency (TF-IDF) для обоих наборов данных с разумным объемом словаря. Это указывает на то, что двунаправленная долговременная кратковременная память (BiLSTM) может изучать структуру предложения для улучшения классификации.

Бесплатно

Журнал