Identification and simulation mathematical model of thermo and physical loading of a small-caliber artillery barrel
Автор: Podkopaev A.V., Babadzhanov A.B., Podkopaev I.A., Dolzhikov V.I.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Informatics, computer technology and management
Статья в выпуске: 2 vol.23, 2022 года.
Бесплатный доступ
An artillery shot is a complex gas and thermodynamic process of rapidly converting the chemical energy of gunpowder into heat, and then into mechanical work of moving the projectile and the recoil parts of the artillery gun. A distinctive feature of the use of aviation artillery weapons is the short time during which firing from an aircraft at a target is possible, which requires the production of not one artillery shot, but the firing of the maximum number of shells with minimal interruptions between bursts of shots. An analysis of the existing physical concepts of the processes occurring in a small-caliber artillery barrel (hereinafter referred to as the barrel) makes it possible to single out the main quantitative characteristic of the temperature state that affects the quality of the functioning of aviation artillery weapons – the temperature field of the barrel. The temperature field, high in level and gradients, formed in the barrel wall during firing, bursts and series of shots, has a significant impact on the reduction in the tactical, technical and operational characteristics of aviation artillery weapons. Therefore, the problem of synthesizing a mathematical model of thermophysical loading of a wellbore (hereinafter referred to as the model if it is clear from the context of material presentation that we are talking about the developed model) and the definition of the temperature field is of great importance for solving a number of practical applications. These include: assessment of bore wear depending on heating; analysis of the thermal strength of the barrel material; analysis of the conditions of projectile guidance along the bore and cartridge case extraction during firing; evaluation of various ways and methods of artificial cooling of shafts; determination of the safety of aviation artillery weapons by eliminating the event of self-activation of a thermally loaded cartridge located in a barrel heated by firing; ensuring the conditions for maintaining the operability of fuses, etc. At the same time, an adequate calculation of non-stationary heat transfer in the bore is difficult, due to the incomplete reliability of the initial data and the dynamics of fast processes in the use of aviation artillery weapons. The aim of the work is to improve mathematical tools that describe the thermodynamic states of the barrel based on the basic functional dependencies of internal ballistics and a dispersed combination of heat transfer methods and finite differences. Numerous and comprehensive testing of the synthesized model, comparison of the calculation results with the data of the classical theory, self-similar solutions and experimental data confirmed the reliability and predetermined the sufficient suitability of the model for its intended use as the objects of research become more complex.
Firing mode, thermal conductivity, heat transfer, differential equation, difference equation, reliability
Короткий адрес: https://sciup.org/148329622
IDR: 148329622 | DOI: 10.31772/2712-8970-2022-23-2-209-226
Список литературы Identification and simulation mathematical model of thermo and physical loading of a small-caliber artillery barrel
- Miropolsky F. P., Morozov A. A., Pyriev E. V. Ballistika aviatsionnykh sredstv porazheniya. Ch. 1. Vnutrennyaya ballistika stvol’nykh sistem i raketnyye dvigateli tverdogo topliva [Ballistics of means of destruction. P. 1. Internal ballistics of barrel systems and solid propellant rocket engines]. Moscow, AFIA named after N. E. Zhukovsky Publ., 2008, 255 p.
- Derevianko V. A., Makukha A. V. [Measuring the temperature distribution with a three-wire thermistor sensor system]. Sibirskiy zhurnal nauki i tekhnologiy. 2019, Vol. 20, No. 3, P. 334–343 (In Russ.).
- Lobanov P. D., Usov E. V., Svetonosov A. I., Lezhnin S. I. [Analysis of experimental data on melting and movement of a metal melt over a cylindrical surface]. Teplofizika i aeromekhanika. 2020. No. 3, P. 483–490 (In Russ.).
- Cruz C., Marshall A. Surface and gas measurements along a film cooled wall. Thermophysics and Heat Transfer, 2007. No. 21. P. 181–189.
- Gusev S. A., Nikolaev V. N. [Parametric identification of the thermal state of electronic equipment in the aircraft instrument compartment]. Sibirskiy zhurnal nauki i tekhnologiy. 2019, Vol. 20, No. 1, P. 62–67 (In Russ.).
- Vasiliev E. N. [Calculation of heat transfer characteristics of a ribbed wall]. Sibirskiy aerokosmicheskiy zhurnal. 2020, Vol. 21, No. 2, P. 226–232 (In Russ.).
- Zuev A. A., Arngold A. A., Khodenkova E. V. [Heat transfer in the field of centrifugal forces for elements of gas turbines]. Sibirskiy aerokosmicheskiy zhurnal. 2020, Vol. 21, No. 3, P. 364–376 (In Russ.).
- Zakharenkov V. F., Agoshkov O. G., Devyatkin V. A., Yurchenko N. A. [Study of the thermal erosion resistance of barrel by the method of planning an experiment]. Мaterialy III Vseros. nauch.-tekhn. konf. “Fundamental’nyye osnovy ballisticheskogo proyektirovaniya” [Materials III All-Russ. Scient. and Technic. Conf. “Fundamentals of ballistic design”]. St. Petersburg, 2012, P. 79–86 (In Russ.).
- Ashurkov A. A., Lazovik I. N., Nikitenko Yu. V. [Study of the process of wear of barrels of pulsed heat engines of aviation weapons systems]. Мaterialy XIII Vseros. nauch.-tekhn. konf. “Problemy povysheniya boyevoy gotovnosti, boyevogo primeneniya, tekhnicheskoy ekspluatatsii i obespecheniya bezopasnosti poletov letatel'nykh apparatov s uchetom klimaticheskikh usloviy Sibiri, Zabaykal’ya i Dal’nego Vostoka” [Materials XIII All-Russ. Scient. and Technic. Conf. “Problems of increasing combat readiness, combat use, technical operation and ensuring flight safety of aircraft, taking into account the climatic conditions of Siberia, Transbaikalia and the Far East”]. Irkutsk, 203, P. 97–100 (In Russ.).
- Podkopaev A. V., Krainov N. F., Lazovik I. N., Morozov S. A. [Experimental studies of limiting thermal loads on the barrel of a rapid-firing gun]. Мaterialy XIII Vseros. nauch.-tekhn. konf. “Problemy povysheniya boyevoy gotovnosti, boyevogo primeneniya, tekhnicheskoy ekspluatatsii i obespecheniya bezopasnosti poletov letatel’nykh apparatov s uchetom klimaticheskikh usloviy Sibiri, Zabaykal’ya i Dal’nego Vostoka” [Materials XIII All-Russ. Scient. and Technic. Conf. “Problems of increasing combat readiness, combat use, technical operation and ensuring flight safety of aircraft, taking into account the climatic conditions of Siberia, Transbaikalia and the Far East”]. Irkutsk, 2003, P. 127–129 (In Russ.).
- Podkopaev A. V., Gusev A. V. [Study of the possibility of refining the finite-difference scheme for solving multidimensional problems of heat conduction]. Мaterialy Vseros. nauch.-prakt. konf. “Innovatsii v aviatsionnykh kompleksakh i sistemakh voyennogo naznacheniya” [Materials All-Russ. Scient. and Practic. Conf. “Innovations in aviation complexes and military systems”]. Voronezh, 2009, P. 157–161 (In Russ.).
- Danilenko R. A., Podkopaev A. V. [Synthesis of a mathematical model for the functioning of the “weapon-cartridge” system based on the solution of a quasi-linear non-stationary heat conduction equation]. Мaterialy V Vseros. nauch.-prakt. konf. “Akademicheskiye Zhukovskiye chteniya” [Materials V All-Russ. Scient. and Practic. Conf. “Academic Zhukovsky reading”]. Voronezh, 2018, P. 67–73 (In Russ.).
- Deutsch A. M. Metody identifikatsii dinamicheskikh ob"yektov [Methods for identifying dynamic objects]. Moscow, Energiya Publ., 1979, 240 p.
- Ostreikovsky V. A. Teoriya sistem [Systems theory]. Moscow, Vysshaya shkola Publ., 1997, 240 p.
- Sapozhnikov S. V., Kitanin L. V. Tekhnicheskaya termodinamika i teploperedacha [Technical thermodynamics and heat transfer]. St. Petersburg, SPbSTU Publ., 1999, 319 p.
- Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Mathematical handbook for scientists and engineers]. Moscow, Nauka Publ., 1984, 832 p.
- Spravochnik po aviatsionnym materialam i tekhnologii ikh primeneniya [Handbook of aviation materials and technologies for their application]. Ed. by V. G. Alexandrov. Moscow, Transport Publ., 1979, 242 p.
- Proyektirovaniye raketnykh i stvol'nykh sistem [Design of rocket and barrel systems]. Ed. by B. V. Orlov. Moscow, Mashinostroyeniye Publ., 1974, 828 p.
- Alferov V. V. Konstruktsiya i raschet avtomaticheskogo oruzhiya [Design and calculation of automatic weapons]. Moscow, Mashinostroyeniye Publ., 1977, 248 p.
- Samarsky A. A., Nikolaev E. S. Metody resheniya setochnykh uravneniy [Methods for solving grid equations]. Moscow, Nauka Publ., 1978, 592 p.
- Zarubin V. S., Stankevich I. V. Raschet teplonapryazhennykh konstruktsiy [Calculation of heat-stressed structures]. Moscow, Mashinostroyeniye Publ., 2005, 352 p.
- Dulnev G. N., Parfenov V. G., Sigalov A. V. Primeneniye elektronnykh vychislitel'nykh mashin dlya resheniya zadach teploobmena [The use of electronic computers for solving heat transfer problems]. Moscow, Vysshaya shkola Publ., 1990, 207 p.
- Vlasova E. A., Zarubin V. S., Kuvyrkin G. N. Priblizhennyye metody matematicheskoy fiziki [Approximate methods of mathematical physics]. Moscow, MSTU named after N. E. Bauman Publ., 2001, 700 p.
- Zadachnik po tekhnicheskoy termodinamike i teorii teplomassoobmena [Task book on technical thermodynamics and the theory of heat and mass transfer]. Ed. by V. I. Krutov and G. B. Petrazhitsky. St. Petersburg, BVH-Petersburg Publ., 2011, 384 p.
- Stolyar S. E., Vladykin A. A. Informatika. Predstavleniye dannykh i algoritmy. [Informatics. Data representation and algorithms]. Moscow, BINOM. Laboratoriya znaniy Publ., 2007, 382 p.