Identification of defects in products made from honeycomb composite materials using infrared scanning thermography

Автор: Golovin D.Yu., Divin A.G., Samodurov A.A., Zaharov Yu.A., Tyurin A.I., Golovin Yu.I.

Журнал: Инженерные технологии и системы @vestnik-mrsu

Рубрика: Приборы и методы экспериментальной физики

Статья в выпуске: 2, 2024 года.

Бесплатный доступ

Introduction. Recently, sandwich-structured composite materials based on honeycomb core and strong thin shells have become widespread. However, these materials are characterized by manufacturing and operational flaws such as “non-gluing” and “delamination” that is the breaking of the bonds between the shell and the honeycomb core that result in the deterioration in the mechanical, acoustic and thermal properties of the material. Aim of the Study. The study is aimed at developing effective methods for detecting flaws in gluing shell with comb core in honeycomb polymer materials.

Scanning thermography, non-destructive testing, composite materials, honeycomb core, flaw detection, delamination

Короткий адрес: https://sciup.org/147243818

IDR: 147243818   |   DOI: 10.15507/2658-4123.034.202402.265-280

Список литературы Identification of defects in products made from honeycomb composite materials using infrared scanning thermography

  • Ratcliffe J.G., Czabaj M.W., Jackson W.C. A Model for Simulating the Response ofAluminum Honeycomb Structure to Transverse Loading. 15th US-Japan Conference on Composite Materials Meeting 2012;38-53. Available at: https://ntrs.nasa.gov/api/citations/20120015487/downloads/20120015487.pdf (accessed 06.10.2023).
  • Heimbs S. Virtual Testing of Sandwich Core Structures Using Dynamic Finite Element Simulations. Computational Materials Science. 2009;45(2):205-216. https://doi.org/10.1016/jxommatsci.2008.09.017
  • Giglio M., Manes A., Gilioli A. Investigations on Sandwich Core Properties Through an Experimental-Numerical Approach. Composites Part B: Engineering. 2012;43(2):361-374. https://doi.org/10.1016/j. compositesb.2011.08.016
  • Yang X., Sun Y., Yang J., Pan Q. Out-of-Plane Crashworthiness Analysis of Bio-Inspired Aluminum Honeycomb Patterned with Horseshoe Mesostructure. Thin-Walled Structures. 2018;125:1-11. https://doi. org/10.1016/j.tws.2018.01.014
  • Liu S., Zhang Y., Liu P. New Analytical Model for Heat Transfer Efficiency of Metallic Honeycomb Structures. International Journal of Heat and Mass Transfer. 2008;51(25-26):6254-6258. https://doi. org/10.1016/j.ijheatmasstransfer.2007.07.055
  • Hong S.-T., Pan J., Tyan T., Prasad P. Quasi-Static Crush Behavior of Aluminum Honeycomb Specimens under Non-Proportional Compression-Dominant Combined Loads. International Journal of Plasticity. 2006;22(6):1062-1088. https://doi.org/10.1016/j.ijplas.2005.07.003
  • Dharmasena K.P., Wadley H.N.G., Xue Z., Hutchinson J.W. Mechanical Response of Metallic Honeycomb Sandwich Panel Structures to High-Intensity Dynamic Loading. International Journal of Impact Engineering. 2008;35(9):1063-1074. https://doi.org/10.1016/j.ijimpeng.2007.06.008
  • Côté F., Deshpande V.S., Fleck N.A., Evans A.G. The Out-of-Plane Compressive Behavior of Metallic Honeycombs. Materials Science and Engineering: A. 2004;380(1-2):272-280. https://doi.org/10.1016/j. msea.2004.03.051
  • Rodriguez-Ramirez J.de D., Castanie B., Bouvet C. Experimental and Numerical Analysis of the Shear Nonlinear Behaviour of Nomex Honeycomb Core: Application to Insert Sizing. Composite Structures. 2018;193:121-139. https://doi.org/10.1016/j.compstruct.2018.03.076
  • Kim G., Sterkenburg R., Tsutsui W. Investigating the Effects of Fluid Intrusion on Nomex® Honeycomb Sandwich Structures with Carbon Fiber Facesheets. Composite Structures. 2018;206:535-549. https://doi.org/10.1016/j.compstruct.2018.08.054
  • Chen Z., Yan N. Investigation of Elastic Moduli of Kraft Paper Honeycomb Core Sandwich Panels. Composites Part B: Engineering. 2012;43(5):2107-2114. https://doi.org/10.1016Zj.compositesb.2012.03.008
  • Abd Kadir N., Aminanda Y., Ibrahim M.S., Mokhtar H. Experimental Study of Low-Velocity Impact on Foam-Filled Kraft Paper Honeycomb Structure. IOP Conference Series: Materials Science and Engineering. 2018;290:012082. https://doi.org/10.1088/1757-899X/290/1/012082
  • Toribio M.G., Spearing S.M. Compressive Response of Notched Glass-Fiber Epoxy/Honeycomb Sandwich Panels. Composites Part A: Applied Science and Manufacturing. 2001;32(6):859-870. https:// doi.org/10.1016/S1359-835X(00)00150-0
  • Shahdin A., Mezeix L., Bouvet C., Morlier J., Gourinat Y. Fabrication and Mechanical Testing of Glass Fiber Entangled Sandwich Beams: A Comparison with Honeycomb and Foam Sandwich Beams. Composite Structures. 2009;90(4):404-412. https://doi.org/10.1016/jxompstruct.2009.04.003
  • Bélsky P., Kadlec M. Capability of Non-Destructive Techniques in Evaluating Damage to Composite Sandwich Structures. International Journal of Structural Integrity. 2019;10(3):356-370. https://doi. org/ 10.1108/IJSI-10-2018-0067
  • Usamentiaga R., Venegas P., Guerediaga J., Vega L., Molleda J., Bulnes F.G. Infrared Thermography for Temperature Measurement and Non-Destructive Testing. Sensors. 2014;14(7):12305-12348. https:// doi.org/10.3390/s140712305
  • Golovin Yu.I., Golovin D.Yu., Tyurin A.I. Dynamic Thermography for Technical Diagnostics of Materials and Structures. Russian Metallurgy (Metally). 2021;2021(4):512-527. https://doi.org/10.1134/ S0036029521040091
  • Jiao D., Liu Z., Shi W., Xie H. Temperature Fringe Method with Phase-Shift for the 3D Shape Measurement. Optics and Lasers in Engineering. 2019;112:93-102. https://doi.org/10.1016Zj.optlaseng.2018.09.010
  • Liu Z., Jiao D., Shi W., Xie H. Linear Laser Fast Scanning Thermography NDT for Artificial Disbond Defects in Thermal Barrier Coatings. Optics Express. 2017;25(25):31789-31800. https://doi. org/10.1364/0E.25.031789
  • Jiao D., Shi W., Liu Z., Xie H. Laser Multi-Mode Scanning Thermography Method for Fast Inspection of Micro-Cracks in TBCs Surface. Journal of Nondestructive Evaluation. 2018;37(2):30. https://doi. org/10.1007/s10921-018-0485-1
  • Kaledin V.O., Vyachkina E.A., Vyachkin E.S., Budadin O.N., Kozel'skaya S.O. Applying Ultrasonic Thermotomography and Electric-Loading Thermography for Thermal Characterization of Small-Sized Defects in Complex-Shaped Spatial Composite Structures. Russian Journal of Nondestructive Testing. 2020;56(1):58-69. https://doi.org/10.1134/S1061830920010052
  • Budadin O., Razin A., Aniskovich V., Kozelskaya S., Abramova E. New Approaches to Diagnostics of Quality of Structures from Polymeric Composite Materials under Force and Shock Impact Using the Analysis of Temperature Fields. Journal of Physics: Conference Series. 2020;1636:012022. https://doi. org/10.1088/1742-6596/1636/1/012022
  • Rellinger T., Underhill P.R., Krause T.W., Wowk D. Combining Eddy Current, Thermography and Laser Scanning to Characterize Low-Velocity Impact Damage in Aerospace Composite Sandwich Panels. NDT and E International. 2021;120:102421. https://doi. org/10.1016/j.ndteint.2021.102421
  • Khodayar F., Lopez F., Ibarra-Castanedo C., Maldague X. Parameter Optimization of Robotize Line Scan Thermography for CFRP Composite Inspection. Journal of Nondestructive Evaluation. 2018;37(1):5. https://doi.org/10.1007/s10921-017-0459-8
Еще
Статья научная