Impact of arsenic on the seedlings of Ranjit and Aijung, two most edible rice cultivars of Assam, India

Автор: Khan Zesmin, Thounaojam Thorny Chanu, Bhagawati Rupankar, Upadhyaya Hrishikesh

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.18, 2022 года.

Бесплатный доступ

Arsenic (As) toxicity profoundly affects the yield and quality of rice worldwide and it is one of the crucial threats in the world as rice being one of the major staple cereal crops. The present study was designed to investigate the growth (germination, growth of the seedlings), stress (H2O2 and lipid peroxidation) and biochemical parameters (amylase activity, enzymatic and nonenzymatic antioxidant activity) of Ranjit and Aijung, the two most edible cultivars of Assam under arsenic stress. Both the rice cultivars responded differentially to As treatments and showed differences in all noted parameters. With increasing arsenic concentration, reduction in germination, plumule-radicle length, reduced fresh and dry mass, and declination in amylase activity was prompted. The reductions of most of the observed parameters were higher in Ranjit than Aijung cultivar as compared to their respective control. Alteration of stress-related parameters and antioxidant enzymes were also inferred under As stress. Analysis of growth and biochemical study revealed that Aijung cultivar is more tolerant to As stress than Ranjit cultivar and that might be associated with a potent antioxidative defense system.

Еще

Arsenic stress, assam, most edible, rice cultivar, tolerant

Короткий адрес: https://sciup.org/143178336

IDR: 143178336

Список литературы Impact of arsenic on the seedlings of Ranjit and Aijung, two most edible rice cultivars of Assam, India

  • Ahmad A., Khan W.U., Shah A.A., Yasin N.A., Naz S., Ali A., Tahir A., Batool AI. (2021). Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica juncea. Chemosphere, 262,128384.
  • Alvarenga I.F., Dos Santos F.E., Silveira G.L., Andrade-Vieira L.F., Martins G.C., Guilherme L.R. (2020). Investigating arsenic toxicity in tropical soils: A cell cycle and DNA fragmentation approach. Sci. Total Environ., 698, 134272.
  • Bag A.G., Nandi R., Chatterjee N., Dolui S., Hazra G.C., Ghosh M. (2019). Toxicity of arsenic on germination and seedling growth of indigenous aromatic rice varieties of India. Int. J. Chem. Sci., 7, 2889-96.
  • Bernfeld P. (1955). Amylases, a and p.149-158.
  • Chandrakar V., Yadu B., Meena R.K., Dubey A., Keshavkant S. (2017). Arsenic-induced genotoxic responses and their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L. Plant Physiol. Biochem., 112, 74-86.
  • Chance B., Maehly A.C. (1955). Assay of catalases and peroxidases.-Methods Enzymol. 2, 764-775.
  • Ekmek?i Y., Tanyola? D., Ayhan, B. (2009). A crop tolerating oxidative stress induced by excess lead: maize. Acta physiologiae plantarum, 31(2), 319-330.
  • Finnegan P.M., Chen W. (2012). Arsenic toxicity: the effects on plant metabolism. Front Physiol., 3, 182199.
  • Giannopolitis C.N., Ries S.K. (1977). Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plantphysiol., 59(2), 315-318.
  • Harminder P.S., Daizy R.B., Ravinder K.K., isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125, 189-198.
  • Komal A. (2007). Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul., 53: 65-73.
  • He J., Ren Y., Pan X., Yan Y., Zhu C., Jiang D. (2010). Salicylic acid alleviates the toxicity effect of cadmium on germination, seedling growth, and amylase activity of rice. J. Plant Nutr. Soil Sci., 173(2), 300-5.
  • Kalita J., Tanti B. (2020). Screening of some traditional rice cultivars of Assam, India, for their response to arsenic-induced abiotic stress. Acta Agrobotanica, 73(1).
  • Kaneko M., Itoh H., Ueguchi-Tanaka M., Ashikari M., Matsuoka M. (2002). The a-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiol, 128(4), 1264-1270.
  • Keshavkant S. (2020). Titanium nanoparticles attenuates arsenic toxicity by up-regulating expressions of defensive genes in Vigna radiata L. J. Environ. Sci., 92, 18-27.
  • N., Irfan M., Sehar Z., Khan N.A. (2021). Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice. Ecotoxicol. Environ. Sal., 222,112535.
  • Khan M.H., Panda S.K. (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol. Plant., 30(1), 81-89.
  • Khan N.A.S., Singh S., Nazar R. (2007). Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J. Agron. Crop Sci., 193(6), 435-444.
  • Kumar J., Kumar S., Mishra S., Singh, A. K. (2021). Role of zinc oxide nanoparticles in alleviating arsenic mediated stress in early growth stages of wheat. J. Environ. Biol, 42, 518-523.
  • Kumar A., Basu S., Kumar, G. (2021). Evaluating the effect of seed-priming for improving arsenic tolerance in rice. J. Plant Biochem. Biotechnol., 1-5.
  • Lin C.C., Kao C.H. (2001). Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci.,160(2), 323-9.
  • Liu H., Probst A., Liao B. (2005). Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan China). Sci Total Environ., 339, 153-166.
  • Maiti S., Ghosh N., Mandal C., Das K., Dey N., Adak, M.K. (2012). Responses of the maize plant to chromium stress with reference to antioxidation activity. Braz. J. Plant Physiol., 24(3), 203-212.
  • Mobin M., Khan N.A. (2007). Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J. Plant Physiol, 164(5), 601-610.
  • Mridha D., Paul I., De A., Ray I., Das A., Joardar M., Chowdhury N.R., Bhadoria P.B.S. Roychowdhury, T. (2021). Rice seed (IR64) priming with potassium humate for improvement of seed germination, seedling growth and antioxidant defense system under arsenic stress. Ecotoxicol. Environ. Saf., 219, 112313.
  • Noctor G., Foyer C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant biol., 49(1), 249-79.
  • Oser B.L. (1979). Care and maintenance of animals. Hawks Physiological Chemistry, McGraw Hill Inc, New York.1372-77.
  • Pandey C., Khan E., Panthri M., Tripathi R.D., Gupta, M. (2016). Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth Heath R.L., Packer L.J. (1968). Photoperoxidation in Katiyar P., Yadu B., Korram J., Satnami M.L., Kumar M., Khan M.I., Jahan B., AlAjmi M.F., Rehman M.T., Iqbal parameters, cellular antioxidants and stress modulators under arsenic stress. Plant Physiol. Biochem., 104, 216-225.
  • Rui M., Ma C., Hao Y., Guo J., Rui Y., Tang X., Zhao Q., Fan X., Zhang Z., Hou T., Zhu, S. ( 2016).Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci., 7, 815.
  • Shankar U. (2006). Seed size as a predictor of germination success and early seedling growth in 'hollong' (Dipterocarpus macrocarpus Vesque). New For., 31, 305-320.
  • Shri M., Kumar S., Chakrabarty D., Trivedi P.K., Mallick S., Misra P., Shukla D., Mishra S., Srivastava S., Tripathi R.D., Tuli, R. (2009). Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol. Envirol. Saf., 72(4), 11021110.
  • Singh A.P., Dixit G., Kumar A., Mishra S., Kumar N., Dixit S., Singh P.K., Dwivedi S., Trivedi P.K., Pandey V., Dhankher O.P. (2017). A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiol. Biochem., 115,163-73.
  • Wu F., Fang Q., Yan S., Pan L., Tang X., Ye W. (2020). Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germination, early growth, and arsenic uptake. Environ. Sci. Pollut. Res., 27(21), 26974-26981.
  • Yadu B., Chandrakar V., Tamboli R., Keshavkant S. (2019). Dimethylthiourea antagonizes oxidative responses by upregulating expressions of pyrroline-5-carboxylate synthetase and antioxidant genes under arsenic stress. Int. J. Environ. Sci. Technol., 16, 8401-8410.
  • Yuan Y., Imtiaz M., Rizwan M., Dong X., Tu, S. (2020). Effect of vanadium on germination, growth and activities of amylase and antioxidant enzymes in genotypes of rice. Int. J. Environ. Sci. Tech., 17(1), 383-394.
Еще
Статья научная