Impact of pre-anthesis salt stress on biochemical and yield related traits in salt sensitive and salt tolerant genotypes of Triticum aestivum L
Автор: Singh Divya
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 1 т.19, 2023 года.
Бесплатный доступ
Salinity stress negatively affects the growth and development of wheat leading to diminished grain yield and quality. Salt stress during reproductive stage is one of the significant factors leading to the drastic reduction in grain yield. The objective of this study was to investigate the biochemical responses of pre-anthesis stage salt stress and yield related traits in KRL1-4 salt tolerant and UP2338 salt sensitive cultivar of Wheat. Three different levels of salinity stress (100, 200 and 300 mM NaCl) was induced. Untreated plants were kept as control. Samples were analyzed at pre- anthesis stage (50 DAS and 60 DAS) for various biochemical parameters viz., proline content, total reducing sugar content, total nitrogen content and total protein content. Yield related traits harvest index, tiller numbers per plant, spike height and spike weight were recorded at maturity stage. The amount of proline and reducing sugar increased with increasing salinity, the increase being more in tolerant than in sensitive cultivar. Total nitrogen and total protein content, however, decreased with increasing salt concentration and reduction being more in sensitive than in tolerant cultivar. Yield attributes were affected negatively. The effect was more pronounced in sensitive cultivar compared to tolerant.
Salinity, pre-anthesis, osmolytes, harvest index
Короткий адрес: https://sciup.org/143179381
IDR: 143179381
Список литературы Impact of pre-anthesis salt stress on biochemical and yield related traits in salt sensitive and salt tolerant genotypes of Triticum aestivum L
- Arefian, M., Vessal, S. and Bagheri, A. (2014). Biochemical changes and SDS-PAGE analyses of chickpea (Cicer arietinum L.) genotypes in response to salinity during the early stages of seedling growth. J. Biol. Environ. Sci. 8 : 99-109.
- Arif, M., Bangash, J. A., Khan, F. and Abid, H. (2010). Quality assessment of different iron fortified wheat flours. Pak. J. Biochem. Mole. Biol. 43 : 192-94.
- Arora, N. K. (2019). Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2, 95–96. doi: 10.1007/s42398-019-00078-w
- Barr, H.D. and Weatherley, P.E. 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust. J. Biol. Sci. 15:413-428.
- Bates, L. S., Walden, R. P. and Teare, J. D. (1973). Rapid determination of free proline of water stress studies. Plant Soil 39 : 205-07
- C. Kaya, M. Ashraf, O. Sonmez, S. Aydemir, A. Levent Tuna, M.A. Cullu. (2009).The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity.Sci. Hort., 121 (2009), pp. 1-6
- Divya Singh. (2022). Juggling with reactive oxygen species and antioxidant defense system – A coping mechanism under salt stress, Plant Stress, Volume 5, 100093. https://doi.org/10.1016/j.stress.2022.100093.
- Doneen, L. D. (1932). A micromethod for nitrogen estimation in plant materials. Plant Biochem. 14 : 74-82
- Ehtaiwesh, F. A., and Rashed, H. F. (2020). Growth and yield responses of libyan hard wheat (Triticum durum Desf) genotypes to salinity stress. Zawia Univ. Bull. 22, 33–58.
- EL Sabagh Ayman, Islam Mohammad Sohidul, Skalicky Milan, Ali Raza Muhammad, Singh Kulvir, Anwar Hossain Mohammad, Hossain Akbar, Mahboob Wajid, Iqbal Muhammad Aamir, Ratnasekera Disna, Singhal Rajesh Kumar, Ahmed Sharif, Kumari Arpna, Wasaya Allah, Sytar Oksana, Brestic Marian, ÇIG Fatih, Erman Murat, Habib Ur Rahman Muhammad, Ullah Najeeb, Arshad Adnan. (2021). Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Frontiers in Agronomy, 3. 661932.
- Eroglu, Ç., Cabral, C., Ravnskov, S., Topbjerg, H., and Wollenweber, B. (2020). Arbuscular mycorrhiza influences carbon-use efficiency and grain yield of wheat grown under pre- and post-anthesis salinity stress. Plant Biol. 22, 863–871. doi: 10.1111/plb.13123
- Farouk, S. (2011). Ascorbic acid and α-tocopherol minimize salt-induced wheat leaf senescence. J. Stress Physiol. Biochem. 7, 58–79.
- Ghosh, B., Md, N. A., and Gantait, S. (2016). Response of rice under salinity stress: a review update. Rice Res. 4:167. doi: 10.4172/2375-4338.1000167
- Hajihashemi, S., Kiarostami, K., Enteshari, S. and Saboora, A. (2006). The effects of salt stress and paclobutrazol on some physiological parameters of two salt tolerant and salt sensitive cultivars of wheat. Pak. J. Biol. Sci. 9 : 1370-74.
- Hasan, A., Hafiz1, H. R., Siddiqui, N., Khatun, M., Islam, R. and Al-Mamun, A. (2015). Evaluation of wheat genotypes for salt tolerance based on some physiological traits. J. Crop Sci. Biotech. 18 : 333-40. DOI No. 10.1007/s12892-015-0064-2.
- Iqbal, M. A., Junaid, R., Wajid, N., Sabry, H., Yassir, K., and Ayman, S. (2021). Rainfed winter wheat (Triticum aestivum L.) cultivars respond differently to integrated fertilization in Pakistan. Fresenius Environ. Bull. 30, 3115–3121.
- Kalhoro, N. A., Rajpar, I., Kalhoro, S. A., Ali, A., Raza, S., Ahmed, M., et al. (2016). Effect of salts stress on the growth and yield of wheat (Triticum aestivum L.). Am. J. Plant Sci. 7:2257. doi: 10.4236/ajps.2016.715199
- Kerepesi, I. and Galiba, G. (2000) Osmotic and Salt Stress-Induced Alteration in Soluble Carbohydrate Content in Wheat Seedlings. CropScience, 40, 482-487.
- Khan, S., Khan, J., Islam, N. and Islam, M. (2011). Screening and evaluation of wheat germplasm for yield, drought and disease resistance under rainfed conditions of upland Baluchistan. Pak. J. Bot. 43 : 559-63.
- Kizilgeci, F., Yildirim, M., Islam, M. S., Ratnasekera, D., Iqbal, M. A., and Sabagh, A. E. (2021). Normalized difference vegetation index and chlorophyll content for precision nitrogen management in durum wheat cultivars under semi-arid conditions. Sustainability 13:3725. doi: 10.3390/su13073725
- Liu, X., Chen, D., Yang, T., Huang, F., Fu, S., and Li, L. (2020). Changes in soil labile and recalcitrant carbon pools after land-use change in a semi-arid agro-pastoral ecotone in Central Asia. Ecol. Indic. 110:105925. doi: 10.1016/j.ecolind.2019.105925
- Maas, E. V., and Grieve, C. M. (1990). Spike and leaf development of sal-stressed wheat. Crop Sci. 30, 1309–1313. doi: 10.2135/cropsci1990.0011183X003000060031x
- Odjegba, V. J. (2013). Responses of Zea mays seedlings to salinity stress and exogenous nitrogen supply. Nat Sci. 11 : 63-69.
- Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant science, 163(5), 1037-1046.
- Sehrawat, N., Bhatt, K.V., Sairam, R. K., Toomoka, N., Kaga, A., Shu, Y. and Jaiwal, P. K. (2013). Diversity analysis and confirmation of intra-specific hybrids for salt tolerance in mungbean [Vigna radiata (L.) Wilczek]. Int. J. Integrative Biol. 14 : 65.
- Sharbatkhari, M., Shobbar, Z. S., Galeshi, S., and Nakhoda, B. (2016). Wheat stem reserves and salinity tolerance: molecular dissection of fructan biosynthesis and remobilization to grains. Planta 244, 191–202. doi: 10.1007/s00425-016-2497-3
- Somogyi, M. (1952). Notes on sugar determination. J. Biol. Chem. 195 : 19-23.
- Tareq, M. Z., Hossain, M. A., Mojakkir, M. A., Ahmed, R., and Fakir, M. S. A. (2011). Effect of salinity on reproductive growth of wheat. Bangladesh J. Seed Sci. Technol. 15, 111–116.
- Upadhyaya, H., Khan, M. H. and Panda, S. K. (2007) . Hydrogen peroxide induces oxidative stress in detached leaves of Oryza sativa L. Gen. Appl. Plant Physiol. 33 : 83- 95.
- Wenji Liang, Xiaoli Ma, Peng Wan, Lianyin Liu., 2018. Plant salt-tolerance mechanism: A review, Biochemical and Biophysical Research Communications, Volume 495, Issue 1,2018,Pages 286-291,
- Yousfi, S., Serret, M. D., and Araus, J. L. (2013). Comparative response of δ13C, δ18O and δ15N in durum wheat exposed to salinity at the vegetative and reproductive stages. Plant Cell Environ. 36, 1214–1227. doi: 10.1111/pce.12055
- Yuesen Yue, Mingcai Zhang, Jiachang Zhang, Liusheng Duan, Zhaohu Li., 2012. SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ratio, Journal of Plant Physiology, Volume 169, Issue 3, 255-261.
- Yuesen Yue, Mingcai Zhang, Jiachang Zhang, Liusheng Duan, Zhaohu Li. (2012).SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio,Journal of Plant Physiology,Volume 169, 255-261.
- Zheng, Y., Xu, H., Wang, M. Y., Zheng, X. H., Li, Z. J. and Jaing, G. M. (2009). Responses of salt tolerant and intolerant wheat genotypes to sodium chloride: photosynthesis, antioxidant activities and yield. Photosynthetica 47: 87-94.