Impact of salt stress (NaCl) on growth, chlorophyll content and fluorescence of Tunisian cultivars of chili pepper (Capsicum frutescens L.)

Автор: Zhani Kaouther, Ben Fredj Mariem, Mani Fardaous, Hannachi Cherif

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.8, 2012 года.

Бесплатный доступ

Salinity is considered as the most important abiotic stress limiting crop production and plants are known to be able continuing survive under this stress by involving many mechanisms. In this content, the present study was carried out to evaluate the impact of NaCl on some physiological and biochemical parameters in five Tunisian chili pepper (Capsicum frutescens L.) cultivars: Tebourba (Tb), Somaa (Sm), Korba (Kb), Awald Haffouzz (AW) and Souk jedid (Sj). Thus, an experiment of five months was carried out under greenhouse at Higher Institute of Agronomy, Chott Meriem, Tunisia and stress is induced by NaCl at 7 concentrations (0, 2, 4, 6, 8, 10 and 12g/l). Results showed that increasing salinity stress, for all cultivars, had a negative impact on roots (length, fresh and dry weights) and leaves (number and area). Also, chlorophyll (a and b) amount in addition to quantium yield (Fv/Fm) decreased significantly. However, biosynthesis of proline in leaves is activated. Awlad Haffouzz and Korba cultivars succefully tolerated highest salinity level by accumulating more proline in leaves and maintaining usually higher values in all parameters in opposition to Souk jedid cultivar. Taken together, our data partly explain the mechanism used to ovoid salt stress by pepper plants when excessive in the culture medium.

Еще

Chlorophyll content, leaves, nacl, pepper, proline, quantium yield, roots

Короткий адрес: https://sciup.org/14323689

IDR: 14323689

Список литературы Impact of salt stress (NaCl) on growth, chlorophyll content and fluorescence of Tunisian cultivars of chili pepper (Capsicum frutescens L.)

  • Ahmad, P., Jhon, R. (2005) Effect of salt stress on growth and biochemical parameters of Pisum sativum L. Arch. Agron Soil Sci., 51, 665-672.
  • Ahmad, P., Sharma, S. and Srivastava, P.S. (2007) In vitro seletion of NaHCO3 tolerant cultivars of Morus alba (Local and Sujanpuri) in response to morphological and biochemical parameters. Hort. Sci., 34, 115-123.
  • Akram, M., Farooq, S., Afzaal, M., Naz, F. and Arshad, R. (2006) Chlorophyll Fluorescence in different wheat genotypes grown under salt stress. Pak. J. Bot., 38(5), 1739-1743.
  • Al Thabet, S.S., Leilah, A.A., and Al-Hawass, I. (2004) Effect of NaCl and incubation temperature on seed germination of three canola (Brassica napus L.) cultivars. Scientific of King Faisal University (Basic and Applied Sciences), 5(1):81-92.
  • Alia-Mohanty, P. and Saradhi, P.P. (1992) Effect of sodium chloride on primary photochemical activities in cotyledonary leaves of Brassica juncia. Biochem Physiol., 188, 1-12.
  • Ali, Y., Aslam, Z., Ashraf, M.Y. and Tahir, G.R. (2004) Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. International Journal of Environmental Science & Technology., 1 (3), 221-225.
  • Arnon, D.I. (1949) Copper enzyme in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol., 124, 1-15.
  • Ashraf, M. (1994). Organic substances responsible for salt tolerance in Eruca sativa. Biol. Plant, 36, 255-259.
  • Ashraf, M. (2004) Some important physiological selection criteria for salt tolerance. Flora, 199, 361-376.
  • Ashraf, M. and Foolad, M.R. (2007) Roles of glycinebetaine and proline in improving plant abiotic stress tolerance. Environ. Expt. Bot., 59, 206-216.
  • Ashraf, M. and Harris, P.J.C. (2004) Potential Biochemical Indicators of salinity tolerance in plants. Plant Sci., 166, 3-16.
  • Astorga, G.I., and Melendez, L.A. (2010) Salinity effects on protein content, lipid peroxidation, pigments,and proline in Poulownia imperialis and Paulownia fortune grown in vitro. Electronic Journal of Bitechnology., 13(5), 1-15.
  • Baker, N.R. (1991) Possible role of photosystem II in environmental perturbations of photosynthesis. Physiol. Plant., 81, 563-570.
  • Barbagallo, R., Oxborough, K., Pallett, K. and Baker N.R (2003) Rapid, non invasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol., 132, 485-493
  • Bates, L.S., Waldren, R.P. and Teare I.D. (1973) Rapid determination of free proline for water-stress studies. Plant Soil., 39, 205-207.
  • Beinsan, C., Camen, D., Sumalan, R. and Babau M. (2003) Study concerning salt stress effect on leaf area dynamics and chlorophyll content in four bean local landraces from Banat area. Faculty of Horticulture, 119, 416-419
  • Bettaieb T., Denden M. and Mhamdi M. (2008) Régénération in vitro et caractérisation physiologique de variants somaclonaux de glaïeul (Gladiolus grandiflorus Hort.) tolérants aux basses températures Tropicultura, 26 (1), 10-16.
  • Bjorkman, O. and B. Demmig-Adams (1995) Regulation of photosynthesis light energy capture,conversion, and dissipation in leaves of higher plants. In E.D. Schulze and M.M. Caldwell (eds.), Ecophysiology of Photosynthesis. Berlin, Heidelberg, New York, Springer-Verlag, pp.17-47.
  • Blumenthal-Goldschmidt, S. and Poljakoff-Mayber, A. (1968) Effect of substrate salinity on growth and submicroscopie structure on leaf cells of Atriplex halimus L. Australian Journal of Botany, 16(3), 469-478.
  • Bray, E.A., Bailey-Serres and Weretilnyk E. (2000) Responses to abiotic stress. In: Buchanan B, Gruissem W and Jones R (eds.), Biochemistry and Molecular Biology of Plants. American Society of Plant Physiology, Rockville, pp. 1158-1203.
  • Bybordi, A. (2010) The Influence of Salt Stress on Seed Germination, Growth and Yield of Canola Cultivars. Not. Bot. Hort. Agrobot. Cluj, 38 (1), 128-133
  • Chaum, S., Kirdmanee, C. and Supaibulwatana K. (2004) Biochemical and physiological responses of thai jasmine rice (Oryza sativa L. ssp. indica cv. KDML105) to salt stress. Sci. Asia., 30, 247-253.
  • Chookhampaeng, S. (2011) The Effect of Salt Stress on Growth, Chlorophyll Content Proline Content and Antioxidative Enzymes of Pepper (Capsicum Annuum L.) Seedling. European Journal of Scientific Research, 49 (1), 103-109.
  • Chen, X.Q. and Yu, B.J. (2007) Ionic effects of Na+ and Cl on photosynthesis in Glycine max seedlings under iso osmotic salt stress. J. Plant Physiol. Mol. Biol., 33(4), 294-300
  • Cicek, N. and Cakirlar, H. (2002) The effect of salinity on some physiological parameters in two maize cultivars. Bulg. J. Plant Physiol., 28(1-2), 66-74.
  • De Lacerda, C.F., Cambraia, J., Oliva, M.A., Ruiz, H.A. and Tarquino Prisco, J. (2003) Solute accumulation and distribution during shoot leaf development in two sorghum genotypes under salt stress. Environ and Expt. Bot., 49, 107-120.
  • De Lacerda, C.F., Cambraia, J., Oliva, M.A. and Ruiz, H.A. (2005) Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environ. Exp. Bot., 54, 69-76.
  • DeEII; J.R., Van Kooten, O., Prange, R.K. and Murr, D.P. (1999) Applications of chlorophyll fluorescence techniques in postharvest physiology. Hort. Re, 23, 69-107.
  • Desingh, R. and Kanagaraj, G. (2007) Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. Gen. Appl. Plant Physiol., 33, 221-234.
  • Dubey, R.S.(1997) Photosynthesis in plants under stressful conditions. In Pessarakli, M. (Ed.), Handbook of photosynthesis. New York, Marcel Dekker, pp. 859-875.
  • El-Iklil, Y., Karrou, M., Mrabet, R. and Benichou, M. (2002) Effet du stress salin sur la variation de certains metabolites chez Lycopersicon esculentum et Lycopersicon sheesmanii. Canadian Journal of Plant Science., 82(1), 177-183.
  • El-Shintinawy, F. (2000) Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica., 38, 615-620.
  • Everard, J.D., Gucci, R., Kann, S.C., Flore, J.A. and Loeschner, W.H. (1994) Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol., 106, 281-292.
  • Farhoud, R. (2011) Effect of Salt Stress on Physiological and Morphological Parameters of Rapeseed Cultivars. Adv. Environ. Biol., 5(8), 2501-2508.
  • Farhoudi, R. and Tafti, M.M. (2011) Effect of Salt Stress on Seedlings Growth and Ions Homeostasis of Soybean (Glysin Max) Cultivars. Adv. Environ. Biol., 5(8), 2522-2526.
  • Fougere, F., Le Rudulier, D. and Streeter, J.G. (1991) Effects of salt stress on amino acids, organic acids, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol., 96, 1228-1236.
  • Greenway, H. and Munns, R. (1980) Mechanisms of Salt Tolerance in Nonhalophytes. Annu. Rev. Plant Physiol., 31, 149-190.
  • Hall, D.O. and Rao, K.K. (1999) Photosynthesis. Cambridge University Press, Cambridge, UK, pp.174-180.
  • Hare, P.D., Cress, W.A. and Staden, J. Van. (1999) Proline biosynthesis and degradation: a model system for elucidating stress-related signal transduction. J. Exp. Bot., 50,413-434.
  • Harinasut, P., Srisunaka, S., Pitukchaisopola, S. and Charoensatapornb, R. (2000) Mechanisms of Adaptation to Increasing Salinity of Mulberry: Proline Content and Ascorbate Peroxidase Activity in Leaves of Multiple Shoots. ScienceAsia., 26, 207-211.
  • Hasson, E. and Poljakoff-Mayber A. (1981) Does salinity induce early aging of pea tissue?. Oecologia., 50, 94-97.
  • Hsu, S.Y., Hsu Y.T. and Kao, C.H. (2003) The effect of polyethylene glycol on proline accumulation in rice leaves. Biol Plant., 46, 73-78.
  • Ibn Maaouia-Houimli, S., Denden, M., Dridi-Mouhandes, B. and Ben Mansour-gueddes, S. (2011) Caractéristiques de la croissance et de la production en fruits chez trois variétés de piment (Capsicum annuum L.) sous stress salin. Tropicultura, 2011, 29, 2, 75-81.
  • Ibn Maaouia Houimli, S., Denden, M. and Ben El Hadj S. (2008) Induction of salt tolerance in pepper (Capsicum annuum) by 24-epibrassinolide. EurAsia J BioSci., 2, 83-90.
  • Iqbal, N., Ashraf, M.Y., Javed, F., Vicente, M. and Kafeel, A. (2006). Nitrate reduction and nutrient accumulation in wheat (Triticum aestivum L.) grown in soil salinization with four different salts. J. Pl. Nutr., 29, 409-421.
  • Jimenez, M.S., Gonzalez-Rodriguez, A.M., Morales, D., Cid, M.C., Socorro A.R. and Caballero, M. (1997) Evaluation of chlorophyll fluorescence as a tool for salt stress detection in roses. Photosynthetica., 33, 291-301.
  • Kaya C., Kirnak, H. and Saltalin K. (2002) Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci. Hort., 93, 65-72.
  • Kavi Kishor, P.B., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu,K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P. and Sreenivasulu, N. (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci., 88, 424-438.
  • Kerkeni, A. (2002) Microbouturage et Callogenèse de pomme de terre (Solanum tuberosum L.) sous stress salin (NaCI). Mémoire de Diplôme d'Etudes Approfondies en Agriculture Durable, Ecole Supérieur d'Horticulture et d'élevage Chott Meriem, Sousse, Tunisie.
  • Keshavarzi, M.H.B. (2011) Effect of Salt Stress on Germination and Early Seedling Growth of Savory (Satureja hortensis). Aust. J. Basic & Appl. Sci.,5(2), 3274-3279.
  • Khan, M.A., Shirazi, M.U., Khan, M.A., Mujtaba, S.M., Islam, E., Mumtaz, S., Shereen, A., Ansari, R.U. and Yasin Ashraf, M.(2009) Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum Aestivum L.). Pak. J. Bot., 41(2), 633-638.
  • Koca M., Bor, M., Ozdemir, F. and Turkan, I. (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ. Exp. Bot., 60, 344-351.
  • Kocheva, K., Lambrev, P., Georgiev, G., Goltsev, V. and Karabaliev, M. (2004) Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry., 63, 121-124.
  • Kumar, S.G., Reddy, A.M. and Sudhakar, C. (2003) NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sci., 165, 1245-1251.
  • Lichtenthaler, H.K., Langsdorf, G., Lenk, S. and Bushmann, C. (2005) Chlorophyll fluorescence imaging of photosynthetic activity with the flesh lamp fluorescence imaging system. Phtosynthetica., 43, 355-369.
  • Lutts, S., Kinet, J. M. and Bouharmont, J. (1996) NaCl-induced senes-cence in leaves of rice (Oryza sativa, L.) cultivars differing in salinity resistance. Ann. Bot., 78, 389-398.
  • Malik, A.A., Li, W., Lou L., Weng, J. and Chen, Jin-F. (2010) Biochemical/physiological characterization and evaluation of in vitro salt tolerance in cucumber. Afr. J. Biotechnol., 9(22), 3284-3292
  • Masojidek, J. and Hall, V. (1992) Salinity and drought stress are amplified by high irradiance in sorghum. Photosynthetica., 27, 159-171.
  • Maxwell, K. and Johnson, G.N. (2000) Chlorophyll fluorescence-a practical guide. J. Exp. Bot., 51, 659-668.
  • Mehouachi, T. (1993) Evaluation de la croissance et de l'activité écophysiologique de la pomme de terre en relation avec le stress nutritif. Thèse de Doctorat. Faculté des Sciences Agronomiques de Gand, Belgique.
  • Mensah, J.K., Akomeah, P.A., Ikhajiagbe, B. and Ekpekurede, E.O. (2006) Effects of salinity on germination, growth and yield of five groundnut genotypes. Afr. J. Biotechnol., 5(20), 1973-1979.
  • Misra, N. and Gupta, A.K. (2005) Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci., 169, 331-339.
  • Molazem, D., Qurbanov, E.M. and Dunyamaliyev, S.A. (2010) Role of Proline, Na and Chlorophyll Content in Salt Tolerance of Corn (Zea mays L.). American-Eurasian J. Agric. & Environ. Sci., 9(3), 319-324.
  • Moussa H.R. (2006) Influence of Exogenous Application of Silicon on physiological Response of Salt-stressed Maize (Zea mays L.). Int. J. Agri. Biol.. 8(2), 293-297.
  • Mundree, S.G., Baker, B., Mowla,S., Peters, S., Marais, S., Vander Willigen, C., Govender, K., Maredza, A., Muyanga, S., Farran, J.M. and Thomson, J.A. (2002) Physiological and molecular insights into drought tolerance. Afr. J. Biotechnol., 1, 28-38.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell. Environ., 25, 239-250.
  • Munns, R. and Tester, M. (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol., 59, 651-681.
  • Neumann, P.M. (1995) Inhabitation of root growth by salinity stress: Toxicity or an adaptive biophysical response. In Baluska, F., Ciamporova, M., Gasparikova O. and Barlow,P.W.(Eds.), Structure and Function of Roots. The Netherlands: Kluwer Academic Publishers, pp. 299-304.
  • Niu, X., Bressan, R.A., Hasegwa, P.M. and Pardo, J.M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiol., 109, 735-742.
  • Naidoo, G. and Naidoo, Y. (2001) Effects of salinity and nitrogen on growth, ion relations and proline accumulation in Triglochin bulbosa. Wetlands Ecology and Management, 9(6), 491-497.
  • Ouiza, D., Belkhodja, M., Bissati, S. and Hadjadj S. (2010) Effet du Stress Salin sur l'accumulation de Proline Chez Deux Espèces d'Atriplex Halimus L. et Atriplex Canescens (Pursh) Nutt. European Journal of Scientific Research., 41(2), 249-260.
  • Parida, A.K. and Das, A.B. (2005) Salt tolerance and salinity effects on plants. Ecotoxicol. Environ. Saf., 60(3), 324-349.
  • Parida, A., Das, A.B. and Das, P. (2002) NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J. Plant Biol., 45, 28-36.
  • Petrusa, L.M. and I. Winicov. (1997) Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol. Biochem., 35, 303-310.
  • Premachandra, G.S., Saneoka, H., Fujita, K. and Ogata, S. (1992) Leaf water relations, osmotic adjustment, cell membrane stability, epi-cuticular wax load and growth as affected by increasing water deficits in Sorghum. J Exp Bot, 43, 1569-1576.
  • Rahdari P, Tavakoli S, Hosseini SM (2012). Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in Purslane (Portulaca oleraceae L.) leaves. Journal of Stress Physiology & Biochemistry., 8(1), 182-193.
  • Rahimi, A., Biglarifard, A. (2011) Impacts of NaCl stress on proline, soluble sugars, photosynthetic pigments and chlorophyll florescence of strawberry. Advances in Environemental Biology, 5(4), 617-623.
  • Rains, D.W. (1981) Salt tolerance-New developments. In Manassan J.T. and Briskey, E.J. (Eds.). Advances in Food Producing Systems for Arid and Semiarid Lands. Academic Press, New York, pp. 14-456.
  • Ramanjula, S. and Sudhakar, C. (2001) Alleviation of NaCl salinity stress by calcium is partly related to the increased proline accumulation in mulberry (Morus alba L.) callus. J. Plant Biol., 28, 203-206.
  • Rao, G.G. and Rao, G.R. (1981) Pigment composition chlorophyllase activity in pigeon pea (Cajanus indicus Spreng) and Gingelley (Sesamum indicum L.) under NaCl salinity. Indian J. Experimental Biol., 19, 768-770.
  • Sadeghi, H. (2009) Effects of Different Levels of Sodium Chloride on Yield and Chemical Composition in Two Barley Cultivars. Am.-Eurasian J. Sustain. Agric, 3(3), 314-320.
  • Shafi, M.,, Bakht, J., Javed Khan, M., Aman Khan, M. and R, (2011) Role of abscisic acid And proline in salinity tolerance of wheat genotypes. Pak. J. Bot., 43(2), 1111-1118.
  • Sharma, S.S. and Dietz, K.J. (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot., 57, 711-726.
  • Schreiber, U., Bilger, W. and Neubauer,C. (1995) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In Schulze E.D. and M.M. Caldwell (eds.), Ecophysiology of Photosynthesis. Berlin, Heidelberg, New York, Springer-Verlag, pp. 49-69.
  • Schwab, K.B. and Gaff, D.F. (1990) Influence of compatible solutes on soluble enzymes from desiccation-tolerant Sporobolus stapfianus and desiccation-sensitive Sporobolus pyramidalys. J Plant Physiol, 137, 208-215.
  • Seki, M., Umezawa, T., Urano, K. and Shinozaki, K; (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol, 10, 296-302.
  • Singh, R., Issar, D., Zala, P.V. and Nautiyal PC (2007) Variation in sensitivity to salinity in groundnut cultivars during seed germination and early seedling growth. Journal of SAT Agricultural Research, 5(1), 1-7.
  • Suriyan, C. and Chalermpol, K. (2009). Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pak. J. Bot., 41, 87-98.
  • Tewari, T. N. and Singh, B.B (1991) Stress studies in lentil (Lensesculenta M.) II. Sodicity induced changes in chlorophyll, nitrate and nitrate reductase, nucleic acid, proline, yield and yield components in lentil. Plant Soil, 136, 225-230.
  • West, D.W. (1986) Stress physiology in trees-Salinity. Acta Hortic., 175, 322-329.
  • Zhang, J., Jia, W., Yang, J. and Ismail, A.M. (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Research, 97, 111-119.
Еще
Статья научная