Implementation of additive 3D printing technology in the development of an experimental oxygen-hydrogen low thrust rocket engine

Автор: V.V. Koshlakov, S.V. Mosolov, A.G. Klimenko, E.Sh. Akbulatov, V.P. Nazarov, E.V. Gerasimov

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Aviation and spacecraft engineering

Статья в выпуске: 3 vol.25, 2024 года.

Бесплатный доступ

Creating the spacecraft propulsion systems with high energy efficiency and minimal weight and size parameters is an urgent scientific and technical task of the domestic rocket engine industry. At the same time, requirements are put forward to optimize the cost and time of design, development and manufacturing of engines, as well as environmental safety at all stages of the product life cycle. In this regard, it is proposed to use advanced laser 3D printing technologies (additive technologies) from metal powder using CAD models of engine parts in the production of space low thrust rocket engines (LTRE). Laser melting technology on modern 3D printers makes it possible to produce complex monolithic engine structures without the use of labor-intensive and resource-intensive operations of machining, welding, and soldering, as well as a significant reduction in the volume of fitting and assembly operations, control and measuring work, and a decrease in the influence of some non-production factors. The article discusses issues of practical application of promising technologies in the creation of LTRE. The results of fire tests are presented, which will be used to refine the previously developed calculation models of oxygen-hydrogen LTRE when creating advanced rocket engines for spacecraft. The object of the study was an experimental sample of LTRE with a nominal thrust of 150 N using gaseous propellant components oxygen and hydrogen, developed and manufactured using additive technology. The experimental LTRE is considered as a prototype of the engine for orientation, stabilization and launching of the oxygen-hydrogen upper stage. The purpose of the work is to study the effectiveness of previously unexplored design solutions for organizing mixture formation and cooling of an oxygen-hydrogen LTRE, to determine their influence on the perfection of the working process and the thermal state of the engine chamber. Fire tests were carried out in single switching mode with a duration sufficient for the LTRE chamber to reach a stationary thermal regime, with the determination of the energy characteristics and thermal state of the structure.

Еще

Low thrust rocket engine, additive technologies, Inconel 718, bench fire tests

Короткий адрес: https://sciup.org/148329746

IDR: 148329746   |   DOI: 10.31772/2712-8970-2024-25-3-320-336

Список литературы Implementation of additive 3D printing technology in the development of an experimental oxygen-hydrogen low thrust rocket engine

  • Logacheva A. I. [Additive technologies for rocket and space technology products: prospects and problems of application]. Tekhnologiya legkikh splavov. 2015, No. 3, P. 39–44 (In Russ.).
  • NASA tests limits of 3D-prnting with powerfull rocket engine check. Available at: http://nasa.gov (accessed: 26.05.2024).
  • Belov S. V., Volkov S. A., Magerramova L. A. et al. [Prospects for the use of additive technologies in the production of complex parts of gas turbine engines from metal materials]. Sbornik nauchnykh trudov nauchn. konf. “Addivnye tekhnologii v rossiyskoy promyshlennosti” [Сollection of scientific papers Scientific. Conf. “Additive technologies in Russian industry”]. Мoscow, 2015, P. 101–102 (In Russ.).
  • Terekhov M. V., Filippova L. B., Martynenko A. A. et al. Additivnye tekhnologii [Additive technologies]. Мoscow, Flinta Publ., 2018, 74 p.
  • GOST R 59036–2020. Additivnye tekhnologii. Proizvodstvo na osnove selektivnogo lazernogo splavleniya metallicheskikh poroshkov. Obshchie polozheniya [State Standard R 59036–2020. Additive technologies. Production based on selective laser melting of metal powders. General provisions]. Moscow, Standartinform Publ., 2020. 22 p.
  • Additive Manufacturing. With Amperprint for 3D-Printing you Have the Powder to Create. Available at: https://www.hoganas.com/en/powder-technologies/additive-manufacturing/3d-printingpowders/ (accessed: 26.05.2024).
  • Akbulatov E. Sh., Nazarov V. P., Gerasimov E. V. [Characteristics research of a low thrust rocket engine manufactured using additive SLM technology]. Siberian Aerospace Journal. 2023, Vol. 24, No. 4, P. 682–696. Doi: 10.31772/2712-8970-2023-24-4-682-696 (In Russ.).
  • Nazarov V. P., Piunov V. Yu., Yatsunenko V. G., Savchin D. A. [Characteristics of low thrust liquidpropellant rocket engines testing process]. Siberian Aerospace Journal. 2021, Vol. 22, No. 2, P. 339–354. Doi: 10.31772/2712-8970-2021-22-2-339-354 (In Russ.).
  • Nazarov V. P., Piunov V. Yu., Golikovskaya K. F., Nazarova L. P. [Simulation modeling of bench test conditions of liquid rocket engines of low-thrust]. Мaterialy ХХVI Mezhdunar. nauch. konf. “Reshetnevskie chteniya” [Materials ХХVI Intern. Scientific. Conf. “Reshetnev reading”]. Krasnoyarsk, 2022, P. 191–192 (In Russ.).
  • Akbulatov E. Sh., Nazarov V. P., Shhelkanov A. N., Koval R. V., Gerasimov E. V. [Development and implementation of innovative additive technologies for printing low thrust rocket engines]. Мaterialy ХХVII Mezhdunar. nauch. konf. “Reshetnevskie chteniya” [Materials ХХVII Intern. Scientific. Conf. “Reshetnev reading”]. Krasnoyarsk, 2023, P. 149–151 (In Russ.).
  • Mosolov S. V., Partola I. S. [Russian rocket engine building perspertives in modern conditions]. Idei K. E. Tsiolkovskogo v teoriyakh osvoeniya kosmosa: Materialy 58-kh Nauchnykh chteniy [Ideas of K. E. Tsiolkovsky in theories of space exploration: Materials of the 58th Scientific Readings]. Kaluga, 2023, P. 94–96 (In Russ.).
  • Lovtsov A. S., Mosolov S. V., Goza D. A., Selivanov M. Yu. [Prospects for the development of engine installations space vehicles]. Materialy II Otraslevoy nauchno-prakticheskoy konferentsii “Sozvezdie Roskosmosa: traektoriya nauki” [Materials II Industry Scientific and Practical Conf. “Roscosmos Constellation: The Trajectory of Science”]. Krasnoyarsk, 2023, P. 29 (In Russ.).
  • Kutuev R. H., Lebedev I. N., Salich V. L. [Development of advanced low thrust rocket engines with ecologically friendly propellants]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. 2009, No. 3 (19), P. 101–109 (In Russ.).
  • Ageenko Yu. I, Lapshin E. A., Morozov I. I., Pegin I. V., Ryzhkov V. V. [Results of experimental studies of parameters of low-thrust rocket engines operating on gaseous oxygen-hydrogen fuel]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. 2014, No. 5 (47), P. 35–45 (In Russ.).
  • Barsukov O. A., Vesnovatov A. G., Mezhevov A. V. et al. [Axial overload engine engine for eco-friendly upper stages]. Trudy mezhdunarodnoy nauchno-tekhnicheskoy konferentsii “Problemy i perspektivy razvitiya dvigatelestroeniya” [Proceedings of the international scientific and technical conf. “Problems and prospects for the development of engine building”]. Samara, 2003, P. 14–19 (In Russ.).
  • Antonov Yu. V., Yagodnikov D. A., Novikov V. I., Lapitskiy V. I., Burkaltsev V. A. [Experimental study of working process in combustion chamber of low- thrust engine using gaseous components methane + oxygen]. Vestnik MGTU im. N. E. Baumana. Seriya Mashinostroenie. 2007, No. 2, P. 35–43 (In Russ.).
  • Vorobiev A. G., Borovik I. N., Ha S. [Analysis of nonstationary thermal state of a low-thrust liquid rocket engine taking into account injection, evaporation and combustion of liquid fuel droplets]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. 2014, No. 1 (43), P. 30–40 (In Russ.).
  • Kochanov A. V., Klimenko A. G. [Study of problems to create rocket microthrusters with pollution- free fuels]. Vestnik MGTU im. N. E. Baumana. Seriya Mashinostroenie. 2006, No. 3 (64), P. 64–73 (In Russ.).
  • Eiselstein H. L. Age-hardenable nickel alloy. Patent US, no. 3046108A, 1962.
  • Pedash A. A., Lysenko N. A., et. al. [Structure and properties of samples from Inconel 718 alloy obtained using selective laser melting technology]. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya. 2017, No. 8, P. 46–54 (In Russ.).
  • GOST R 59184–2020. Additivnye tekhnologii. Oborudovanie dlya lazernogo splavleniya. Obshchie trebovaniya [State Standard R 59184–2020. Additive technologies. Equipment for laser melting. General requirements]. Moscow, Standartinform Publ., 2020. 18 p.
  • Preobrazhenskaya E. V., Borovik T. N., Baranova N. S. Tekhnologii, materialy i oborudovanie additivnykh proizvodstv [Technologies, materials and equipment for additive manufacturing]. Мoscow, RTU MIREA Publ., 2021, 173 p.
  • Gu D. D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. International Materials Reviews. 2012, No. 57 (3), P. 133–164.
Еще
Статья научная