Improvement of salt tolerance in durum wheat by ascorbic acid application
Автор: Azzedine Fercha, Gherroucha Hocine, Baka Mebarek
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 1 т.7, 2011 года.
Бесплатный доступ
The main objective of this study is to examine whether exogenously applied Ascorbic acid (AsA) may enhance the salt tolerance in durum wheat (Triticum durum Desf. var. Waha). Two weeks old seedling, grown in plastic pots of 1kg, were subjected to salt stress by adding 25ml of NaCl (150mm), and treated or not with the addition of ascorbic acid (0.7 mM). Two weeks after salt stress, plants were harvested and the various measures were recorded. The effects of salt stress, in the presence and absence of vitamin C, on the leaf growth, leaf area (LA) and some physiological and biochemical changes were investigated. It was established that the application of vitamin C mitigate to variable extent the adverse effect of salt stress on plant growth, may be due, in part, to increased leaf area, improved chlorophyll and carotenoid contents, enhanced proline accumulation and decreased H2O2 content. In conclusion, we can say that treatment with ascorbic acid improve salt tolerance in durum wheat through the enhancement of multiple processes.
Ascorbic acid, biochemical changes, hydrogen peroxide, salt tolerance, triticum durum
Короткий адрес: https://sciup.org/14323508
IDR: 14323508
Список литературы Improvement of salt tolerance in durum wheat by ascorbic acid application
- Agarwal S., Pandey.V. (2004). Antioxidant enzyme responses to NaCl stress in Cassia Angustifolia. Biologia Plantarum 48 (4): 555-560.
- Al-Hakimi, Hamada A.M. (2001). Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamine or sodium salicylate, Biol. Plant. 44: 253-261.
- Arrigoni O, Arrigoni-Liso R., Calabrese G, (1977). Ascorbic Acid Requirement For Biosynthesis Of Hydroxyproline-Containing Proteins In Plants. FEBS Lett. 81: 135-138.
- Athara H, A Khanb, M Ashraf. (2008). Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Env. Exp. Bot. 63: 224-231.
- Bartels D., Sunkar R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24: 23-58.
- Barth C, De Tullio M, Conklin PL; (2006); The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot. 57: 1657-1665.
- Bates LS, Waldren RP, Teare ID. (1973). Rapid determination of free proline for water-stress studies. Plant Soil. 39: 205-207
- Bharti and O. P. Garg. (1970). Changes in the ascorbic acid content of the lateral buds of soybean in relation to flower induction Plant Cell Physiol. 11: 723 -727. 35
- Blokhina O, E Virolainen, Kurt V. Fagerstedt. (2002). Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review. Ann. Bot., 91: 179-194.
- Chadli R., Belkhodja M (2007). Réponses minérales chez la fève (Vicia faba L.) au stress salin. European Journal of Scientific Research. 18: 645-654
- Chen T.H.H, Murata N. 2002. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion in Plant Biology. 5: 250-257
- Costa P., Neto A., Bezerra M. 2005. Antioxidant-enzymatic system of two sorghum genotypes differing in salt tolerance. Braz. J. Plant Physiol. 17, (4): 353-362.
- Davey M.W, Van Monatgu M, Sanmatin M, Kanellis A, Smirnoff N, Benzie I.J.J, Strain J.J, Favell D, Fletcher J. (2000). Plant L-Ascorbic Acid: chemistry, function, metabolism, bioavailability and effects of processing. J.SCI Food Agric. 80: 825-860.
- Dubois, M., K.A. Guilles, J.K. Hamilton, P.A. Rebers, F. Smith. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356.
- Flowers T.J. (2004). Improving crop salt tolerance, J. Exp. Bot. 55 (396) 307-319.
- Garg O. P., Kapoor V.(1972). Retardation of leaf senescence by ascorbic acid. J. Exp. Bot, 23, (76): 699-703.
- Gosset DR, Millhollon EP, Lucas MC. (1994). Antioxidant response to NACL stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci. 34: 706-714.
- Harinasut P, Srisunak S, Pitukchaisopol S., Charoensataporn R (2000). Mechanisms of 36 adaptation to increasing salinity of mulberry: Proline content and ascorbate peroxidase activity in leaves of multiple shoots. Science Asia 26, 207-11.
- Higazy MA., MM. Shehata., AI. Allam (1995). Free proline relation to salinity tolerance of three sugar beet varieties. Egypt. J. Agric. R. 73,(1): 175-189.
- Hung S.H, Yu C-W, Lin C H. (2005). Hydrogen peroxide functions as a stress signal in plants. Bot. Bull. Acad. Sin. 46: 1-10
- Iqbal M, Ashraf M. (2010). Changes in Hormonal Balance: A Possible Mechanism of Pre-Sowing Chilling-Induced Salt Tolerance in Spring Wheat. Journal of Agronomy and Crop Science 196: 440-445.
- Kingsbury R., Epstein E., Pearcy R. (1984). Physiological responses to salinity in selected lines of wheat. Plant Physiol. 74: 417-423.
- Mahajan S., Tuteja N. (2005). Cold, salinity and drought stresses: an overview. Arch Biochemistry and Biophysics. 444: 139-158
- Mittler R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 7 (9): 405-410
- Munns R., Tester M. (2008). Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 59: 651-8.
- Munns R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment; 25: 239-250.
- Noctor G, A. Arisi, L Jouanin, K J. Kunert, H Rennenberg, C H. Foyer. (1998). Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot., 49: 623-647.
- Pbice, C. E. (1966). Ascorbic acid stimulation of RNA synthesis. Nature, 212: 1481
- Piotr S., Klobus G. (2005). Antioxidant defense in the leaves of c3 and c4 plants under salinity stress. Physiologia Plantarum 125: 31-40.
- Reid, M.E. (1937). Localization of ascorbic acid in the cowpea plant at different periods of development. Am. J. Bot. 24: 445-57.
- Sairam R.K., Srivastava G.C., Agarwal S., Meena R.C. (2005). Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum 49: 85-91.
- Shalata A., Neumann P.M. (2001). Exogenous ascorbic acid (vitamin c) increases resistance to salt tolerance and reduced lipid peroxidation, J. Exp. Bot. 364: 2207-2211.
- Smirnoff N. (2000). Ascorbic acid: metabolism and functions of a multi-facetted molecule. Current Opinion in Plant Biology 3:229-235
- Smirnoff N. (1996). The function and metabolism of ascorbic acid in plants. Annals of Botany. 78:661-669.
- Touchard. C. (2006). Recherche de QTLs et choix de cibles stratégiques pour l'amélioration de la tolérance aux basses températures chez le mais. Thèse de doctorat. Université de technologie. Compiègne. Pp: 246
- Wahid A, M Perveena, S Gelania, S. M.A. Basra (2007). Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. Journal of Plant Physiology. 164: 283-294.
- Xiong L., Zhu J.-K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell and Env. 25: 131-139
- Zhu J-K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 124: 941-948. 37