Inactivation of microorganisms and potato tuber moth eggs and pupae using a dielectric barrier discharge plasma

Автор: Al-hawat Sh., Saour G., Al-mariri A.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.20, 2024 года.

Бесплатный доступ

A dielectric barrier discharge plasma device (DBD) was built, characterized and operated. Ten species of gram-positive and gram-negative bacteria, as well as fungus and spores of Bacillus cereus and its vegetative cells, in addition to eggs and pupae of the potato tuber moth (PTM) were exposed to DBD plasma. A strong detrimental effect on the exposed species was observed in function to the exposure time at helium: air ratio 98:2, electrode gap 1.8 cm, amplitude of discharge voltage 6 kV and an effective power density 208 mW/cm3. The outcome of this work provides valuable data on the use of DBD plasma as an alternative non-heating sterilization method to kill or inhibit microbial growth and protecting potatoes from PTM infestation.

Еще

Dielectric barrier discharge, atmospheric pressure plasma in helium, non-thermal plasma, bacteria, bacterial spores, fungi inactivation, potato tuber moth

Короткий адрес: https://sciup.org/143182780

IDR: 143182780

Список литературы Inactivation of microorganisms and potato tuber moth eggs and pupae using a dielectric barrier discharge plasma

  • Bourke, P., Ziuzina, D., Han, L., Cullen, P. J., Gilmore, B.F. (2017). Microbiological interactions with cold plasma. Journal of Applied Microbiology 123, 308324.
  • Brandenburg, R. (2017). Dielectric barrier discharges: progress on plasma sources and on the understanding regimes and single filaments, Plasma Sources Science and Technology, 26(5): (pp29) D0I:10.1088/1361-6595/aa6426
  • Bures, B. L., Donohue, K. V., Roe R. M. and Bourham, M. A. (2006). Nonchemical dielectric barrier discharge treatment as a method of insect control, IEEE Transactions on Plasma Science, 34(1):55-62. DOI: 10.1109/TPS.2005.863595
  • Cong, L., M. Huang, J. Zhang, and W. Yan. (15 Aug. 2020). Effect of dielectric barrier discharge plasma on the degradation of malathion and chlorpyrifos on lettuce, Journal of the Science of Food and Agriculture, 101(2): 424-432. DOI: 10.1002/jsfa.10651.
  • Croteau A., White, A., Cornell, K. A. Browning , J.
  • (2022). Cold Atmospheric Pressure Plasma Device Exhibits Etching Effects on Bacterial Biofilms. IEEE Trans Radiat Plasma Med Sci. 6: 619-625.
  • Figueroa-Pinochet, M. F., Castro-Alija, M. J., Tiwari, B. K., Jiménez, J. M. López-Vallecillo, M., Cao, M. J., Albertos, I. (2022). Dielectric Barrier Discharge for Solid Food Applications. Nutrients. 14: 4653. https://doi.org/10.3390/ nu14214653
  • Ghomi, H., Mohades, S., Navab Safa, N., Dabiri, H. (2012). Surface decontamination by dielectric barrier discharge plasma. J Biomed Phys. Eng. 2(2),72-76.
  • Guragain , R. P., Baniya, H. B., Dhungana, S., Chhetri, G. K., Sedhai, B., Basnet, N., Sakaya Aavash, B. P., Pandey, Pradhan, S. P., Joshi, U. M. and Subedi, D. P. (2022). Effect of plasma treatment on the seed germination and seedling growth of radish (Raphanus Sativus), Plasma Sci. Technol., 24(1), 015502, DOI: 10.1088/2058-6272/ac3476 Harikrishna, S., Anil, P. P., Shams, R., Dash K. K.
  • (2023). Cold plasma as an emerging nonthermal technology for food processing: A comprehensive review, J. Agric. and Food Res. 14 (2023) 100747
  • Hassan, A. M., Sileem, T. M., & Hassan, R. S. (2019). Verification of atmospheric plasma irradiation as an alternative control method for Tribolium castaneum (Herbst). Brazilian Journal of Biology, 80, 673-679.
  • Hati, S., Patel, M., & Yadav, D. (2018). Food bioprocessing by non-thermal plasma technology. Current Opinion in Food Science, 19, 85-91. Kirk-Bradley, N. T., Salau, T. G., Salzman, K. Z., Moore, J. M. (2022). Atmospheric cold plasma (ACP) treatment for efficient disinfestation of the cowpea weevil, Callosobruchus maculatus. Journal of the ASABE 66: 921-927 (doi: 10.13031/ja.15449).
  • Krosche, J., Koch, W. (March 1996). Studies on the use of chemicals, botanicals and Bacillus thuringiensis in the management of the potato tuber moth in potato stores, Crop Protection, 15 (2):197-203. https://doi.org/10.1016/0261-2194(95)00126-3
  • Maccaferri, C., Saiz-Garcia, A., Capelli, F., Gherardi, M., Alba-Elias, F., Laurita, R., (2023) Evaluation of the
  • Antimicrobal Efficacy of a Large-Area Surface Dielectric Barrier Disharge on Food contact Surfaces, Plasma Chemistry and Plasma Processing 43: 1773-1790,
  • https://doi.org/10.1007/s11090-023-10410-2 Motrescu, I., Poiata, A., Nastuta, A. V., Creanga, D., Popa. G. (2015). Bioeffects of atmospheric plasma discharge on gram-positive and gram-negative bacteria. Journal of Science and Arts, 15(3), 249256.
  • Pathan, F. L., Deshmukh, R. R. Annapure. U. S. (2021). Potential of cold plasma to control Callosobruchus chinensis (Chrysomelidae: Bruchinae) in chickpea cultivars during four year storage, Scientific Reports 11: 13425. Pedroni, M., Morandi S., Silvetti, T., Cremona, A., Gittini, G., Nardone A., Pallotta F., Brasca M.and Vassallo. E. (2018). Bacteria inactivation by atmospheric pressure plasma jet treatment, Journal of Vacuum Science & Technology B, 36 (1): (pp7). https: //doi.org/10.1116/1.4995546
  • Ricchiuto A. C., Borghi, C.A., Cristofolini, A., Neretti, G. (2021). Atmospheric-pressure plasma actuators: Enhancement of the free charges' transport mechanism. Plasma Process Polym. 2021; e2000214, https://doi.org/10.1002/ppap.202000214 Será, B., Scholtz, V., Jiresová, J., Khun, .J., Julák J. and Sery, M. (2021). Effects of non-thermal plasma treatment on seed germination and early growth of leguminous plants- A review, Plants, 10(8), 1616. https://doi.org/10.3390/plants10081616 Sutar, S. A., Thirumdas, R., Chaudhari, B. B., Deshmukh R. R.and Annapure. U. S. (May 2021). Effect of cold plasma on insect infestation and
  • keeping quality of stored wheat flour, Journal of Stored Products Research, 92: (pp7), 101774 https://doi.org/10.1016/jjspr.2021.101774
  • Ukhtiyah, H., Kusumandari, K. Saraswati T. E. (2023). Effect of Dielectric Barrier Discharge (DBD) plasma treatment in drinking water on physical, chemical, and biological parameters, Journal of Physics: Conference Series 2498 (2023) 012017 IOP Publishing doi:10.1088/1742-6596/2498/1/012017
  • Zhai, Y., Sun, J., Ye, S. Wang, Y. Tian, J., Bai, Y., Xiang, Q., Shen, R. (2023). Principal antifungal factors and underlying mechanisms of dielectric barrier discharge plasma against Penicillium expansum spores as well as its application in kiwi-fruit juice, LWT 185 (2023) 115089, https://doi.org/10.1016/j.lwt.2023.115089
  • Zhang, J. J., Kwon, T., S. B. Kim, D. K. Jeong. (2018). Plasma farming: Non-Thermal dielectric barrier discharge plasma technology for improving the growth of soybean sprouts and chickens. Plasma, 1, 285-296; doi:10.3390/plasma1020025
  • Zilli, C., Pedrini, N. Prieto, E., Girotti, J. R., Vallecorsa, P., Ferreyra, M., Chamorro, J. C. , Cejas, E., Fina, B., Prevosto, L., Balestrasse, K. (2022). Non-thermal plasma as emerging technology for Tribolium castaneum pest-management in stored grains and flours, Journal of Stored Products Research 99, 102031
  • Ziuzina, D., van Cleynenbreugel, R., Tersaruolo, C., & Bourke, P. (2021). Cold plasma for insect pest control: Tribolium castaneum mortality and defense mechanisms in response to treatment. Plasma Process. Polym., 18(10), 2000178. https://doi.org/10.1002/ppap.202000178
Еще
Статья научная