Increasing the positioning accuracy of the GLONASS system
Автор: Timofeev A.L., Sultanov A.Kh., Meshkov I.K., Gizatulin A.R.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Aviation and spacecraft engineering
Статья в выпуске: 4 vol.25, 2024 года.
Бесплатный доступ
The accuracy of determining coordinates in global positioning systems is determined by the number of satellites simultaneously visible to the consumer's navigation equipment. Over most of the earth's surface, there are up to 11 GLONASS satellites above the horizon at the same time, but the signal-to-noise ratio in the communication channel required for error-free information reception is often ensured only for 2-4 satellites. To improve the positioning accuracy, it is proposed to use the holographic noise-immune coding method based on the holographic representation of the digital signal. The message coding process is a mathematical modeling of a hologram created in virtual space by a wave from the input signal source. It is shown that the holographic representation of the signal has significantly greater noise immunity and allows restoring the original digital combination when most of the code message is lost and when the coded signal is distorted by noise several times exceeding the signal level. The studies have shown that the introduction of holographic coding in the GLONASS satellite communication channel will enable consumer navigation equipment to receive information from a larger number of satellites, which will significantly improve the positioning accuracy. In a common situation where the required signal-to-noise ratio is maintained for only 4 GLONASS satellites, the positioning error exceeds 10 meters. Using holographic coding in the same situation, information from 9 satellites will be decoded without error, and the positioning error will be about 2 meters.
Holographic coding, error correction in the communication channel, positioning error
Короткий адрес: https://sciup.org/148329760
IDR: 148329760 | DOI: 10.31772/2712-8970-2024-25-4-482-492
Список литературы Increasing the positioning accuracy of the GLONASS system
- Pudlovsky V. B. [Selection of GLONASS satellites to reduce the error in determining plan coordinates]. Raketno-kosmicheskoye priborostroyeniye i informatsionn·yye sistemy. 2019, Vol. 6, No. 3, P. 15–22 (In Russ).
- Aleshin B. S., Antonov D. A., Veremeenko K. K. et al. [Small-sized integrated navigation and landing complex]. Tr. MAI. 2012, No. 54 (In Russ). Available at: https://www.mai.ru/science/trudy/ published.php?ID=29692.
- Valaityte A. A., Nikitin D. P., Sadovskaya E. V. [Study of the influence of multipath error on the accuracy of determining the parameters of GNSS (global navigation satellite systems) signals using a navigation field simulator]. Tr. MAI. 2014, No. 77 (In Russ). Available at: http://www.mai.ru/science/trudy/published.php?ID=53172.
- Maltsev G. N., Sakulin A. N., Sakulin E. A. [Potential accuracy of binding of mobile measuring points using signals from the GLONASS satellite navigation system]. Voprosy radioelektroniki, ser. Tekhnika televideniya. 2015, No. 2, P. 57–64 (In Russ.).
- Ryabov I. V., Romanov I. S. [Determination of factors influencing positioning accuracy using global navigation satellite systems GPS and GLONASS]. DSPA: Voprosy primeneniya tsifrovoy obrabotki signalov. 2018, Vol. 8, No 2, P. 167–170 (In Russ.).
- Tsyrempilova N. S., Khavronina T. E. [Accuracy of measurement of navigation parameters in the navigation equipment of the consumer of the GLONASS satellite radio navigation system equipped with an antenna array]. Aktual'n·yye problemy aviatsii i kosmonavtiki. 2015, Vol. 1, P. 80–82 (In Russ.).
- Sharshavin P. V., Kondratyev A. S., Grebennikov A. V. [Application of digital registration to improve the accuracy of pseudo-range measurements using signals from satellite radio navigation systems GLONASS/GPS]. Vestnik Sib. gos. aerokosmich. un-ta im. akad. M. F. Reshetneva. 2012, No. 1 (41), P. 109–111 (In Russ.).
- Mishin A. Yu., Frolova O. A., Isaev Yu. K., Egorov A. V. [Integrated navigation system of an aircraft]. Tr. MAI. 2010, No. 38 (In Russ). Available at: https://trudymai.ru/published.php?ID=14161.
- Ivanov V. F., Koshkarov A. S. [Increasing the noise immunity of GLONASS consumer navigation equipment through integration with inertial navigation sensors]. Tr. MAI. 2017, No. 93, P. 23–39 (In Russ.).
- Tkachev A. B. [New ways to increase the noise immunity of signals from global navigation satellite systems]. Vestnik MAI. 2011, Vol. 18, No. 5, P. 72–77 (In Russ.).
- Dvorkin V. V., Bakitko R. V., Kurshin V. V., Povalyaev A. A. [Russian navigation and information satellite system]. Raketno-kosmicheskoye priborostroyeniye i informatsionn·yye sistemy. 2018, Vol. 5, No. 3, P. 3–16 (In Russ). DOI: 10.30894/issn2409-0239.2018.5.3.3.16.
- GLONASS. Interfeysnyy kontrol'nyy dokument [GLONASS. Interface control document (revision 5.1)]. Moscow, 2008, 60 p.
- Soloviev Yu. A. Sistemy sputnikovoy navigatsii [Satellite navigation systems]. Moscow, ECO-TRENDS Publ., 2000, 268 p.
- Timofeev A. L. [Using holographic coding to increase the noise immunity of communication channels]. ITportal. 2018, Vol. 18, No. 2. (In Russ). Available at: http://itportal.ru/science/tech/ ispolzovanie-golograficheskogo-kodi.
- Timofeev A. L., Sultanov A. Kh., Meshkov I. K., Gizatulin A. R. [Application of holographic coding to increase the reliability of information transmission in noise communication channels]. Zhurnal radioelektroniki. 2024, No. 6 (In Russ). Available at: https://doi.org/10.30898/1684-1719.2024.6.8.
- Timofeev A. L., Sultanov A. Kh., Meshkov I. K., Gizatulin A. R. [Increasing the period of active use of on-board electronic equipment of spacecraft]. Siberian Aerospace Journal. 2024, Vol. 25, No. 1, P. 33–42. Doi: 10.31772/2712-8970-2024-25-1-33-42.
- Timofeev A. L., Sultanov A. Kh., Meshkov I. K., Gizatulin A. R. [Radar with holographic coding of probing signal]. Zhurnal radioelektroniki. 2024, No. 3. Available at: https://doi.org/10.30898/1684-1719.
- Timofeev A. L., Sultanov A. Kh. Holographic method of error-correcting coding. Optical Technologies for Telecommunications 2018. 2019, Vol. 11146, P. 111461A. DOI: 10.1117/12.2526922.
- Timofeev A. L., Sultanov A. Kh. [Construction of an error-resistant code based on a holographic representation of arbitrary digital information]. Komp'yuternaya optika. 2020, Vol. 44, No. 6, P. 978–984. (In Russ.). DOI: 10.18287/2412-6179-CO-739.
- Kudriashov B. D. [Fundamentals of coding theory]. Osnovy teorii kodirovaniya. St. Petersburg, BHV-Petersburg Publ., 2016, 224 p.
- Sklar B. [Digital Communications: Fundamentals and Applications]. Moscow, Vil'yams Publ., 2007, 1104 p.
- Williams F. J. Mac, Sloane N. J. A. Teoriya kodov, ispravlyayushchikh oshibki [The Theory of Error-Correction Codes]. Moscow, Svyaz' Publ., 1979, 744 p.