Increasing the specific impulse of an oxygen-hydrogen liquid rocket engine by in-creasing heat transfer in the combustion chamber
Автор: Vasilevsky D.O.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Aviation and spacecraft engineering
Статья в выпуске: 4 vol.23, 2022 года.
Бесплатный доступ
Liquid-propellant rocket engines (LPRE), operating according to a gas-free generator scheme, are used for the upper stages of launch vehicles and upper stages. In engines of this scheme, only cryogenic fuel is used, which provides a high engine STI. Also, a distinctive feature is the absence of a gas generator, the combustion generators of which feed the turbine of the main turbopump unit. In the gas-free LPRE scheme, the turbine is driven by gas-return hydrogen heated in the cooling loop. Therefore, the high parameters of the LRE, such as the pressure in the CC, the thrust of the engine and the specific thrust pulse depend on the effective heat removal from the firing wall of the combustion chamber and the intensification of heat ex-change in the cooling path. There is a number of solutions that allow to increase the amount of heat transferred to the refrigerant in the inter-shirt space. Therefore, the search for an optimal cooling scheme and promising design solutions for the intensification of heat transfer in the engine cooling path will allow us to determine the high param-eters of the LPRE. This article discusses the effect on the thermal state of the combustion chamber of the gas fins installed on the firing wall of the engine. Gas fins belong to the developed heat exchange surfaces and increase the area of the side surface of the combustion chamber. With the help of the developed mathematical model of the cooling chamber of a gas-free LRE, extremes in the intensification of heat exchange in the cooling path have been identified. The dependences of the specific thrust impulse of the engine on the pressure in the combustion chamber and the geometric dimensions of the engine are also obtained.
LPRE of the expaned cycle circuit, thermal protection of the engine body, mathematical model of LPRE, pneumatic-hydraulic circuit, heat and mass transfer of combustion products
Короткий адрес: https://sciup.org/148329660
IDR: 148329660 | DOI: 10.31772/2712-8970-2022-23-4-671-687
Список литературы Increasing the specific impulse of an oxygen-hydrogen liquid rocket engine by in-creasing heat transfer in the combustion chamber
- Nesterov V. E., Rudakov V. B., Makarov V. I. [Analysis of the main tasks of experimental test-ing of a reusable rocket and space system]. Vestnik MAI. 2013, Vol. 20, No. 5, P. 77–85 (In Russ.).
- Shlyahov V. I. Pnevmogidrosistemy kriogennyh dvigatelnyh ustanovok mezhorbital'nyh buksi-rov [Pneumohydrosystems of cryogenic propulsion systems of interorbital tugs]. Moscow, MAI Publ., 1991, 61 p.
- Zatonskij A. V. Chislennoe modelirovanie i raschet techeniya I teploobmena v sisteme s mezhkanalnoj transpiraciej teplonositelya. Kand. Dis. [Numerical modeling and calculation of flow and heat transfer in a system with interchannel transpiration of a coolant. Cand. Diss.]. Moscow, MGTU Publ., 1996, 106 p.
- Bessard R., Delauer R. Yadernye dvigateli dlya samoletov I raket [Nuclear engines for aircraft and rocket]. Moscow, Military Publishing House Ministry of Defense of the USSR Publ., 1967, 398 p.
- Demyanko Yu. G., Konyuhov G. V., Koroteev A. S. Yadernye raketnye dvigateli [Nuclear rocket engines]. Moscow, Norma-inform Publ., 2001, 415 p.
- Dolgopolov C. Yu., Lomov I. V., Shamanin I. V. Vvedenie v yaderno-vodorodnuyu energetiku [Introduction to nuclear and hydrogen energy]. Tomsk, TPU Publ., 2008, 168 p.
- Kirdyushkin Yu. S. [The potential of hydrogen fuel for civil aviation of the future]. Scientific bulletin of MGTU GA. 2013, Vol. 194, P. 110–113 (In Russ.). DOI: 10.18698/2541-8009-2017-12-205.
- Zagashvili Yu. V., Levihin A. A., Kuz'min A. M. [Technology of hydrogen production using small-sized transportable installations based on high-temperature synthesis gas generators]. Questions of materials science. 2017, No. 2, P. 92–109 (In Russ.).
- Zagashvili Yu. V., Levihin A. A., Kuz'min A. M. [Fundamentals of designing three-component synthesis gas generators]. Oil and gas chemistry. 2017, No. 4, P. 9–16 (In Russ.).
- Zagashvili Yu. V., Levihin A. A., Kuz'min A. M. [Experimental installations based on high-temperature reactors for solving problems of gas chemistry, petrochemistry and ecology]. Problems of geology, development and operation of deposits and transportation of hard-to-recover hydrocarbon reserves. 2018, P. 229–234 (In Russ.).
- Polyakov T. V. Sostoyanie i perspektivy vodorodnoj energetiki v Rossii i mire [The state and prospects of hydrogen energy in Russia and the world]. Available at: https://mgimo.ru/files/ 120132/polyakova_vodorod.pdf (accessed 10.4.2022).
- Piunov V. Yu., Nazarov V. P., Kolomentsev A. I. [Improving the energy characteristics of ox-ygen-hydrogen liquid-propellant rocket engines of upper stages of methods for optimizing design schemes]. Vestnik MAI. 2017, Vol. 24, No. 3, P. 23–33 (In Russ.).
- Yoshihiro Naruo., Nobuhiro Tanatsugu.,Koichi Suzuki. Development study of LOX/LH2 High Pressure Expander Cycle Engine. JSTS. Vol. 4, No.1, P. 11–20.
- Pascal Pempie., Luca Boccaletto. LOX/CH4 EXPANDER UPPER STAGE ENGINE. 55 th International Astronautical Congress. October 2004, Vancouver, British Columbia.
- Bregvadze D. T., Gabidulin O. V. [Application of oxygen + methane fuel in liquid rocket en-gines]. Polytechnic Youth Magazine. 2017, No. 12, P. 1–13 (In Russ.). DOI: 10.18698/2541-8009-2017-12-205.
- Chudina Yu. S. Rabochie processy v raketnom dvigatele maloj tyagi na gazoobraznyh kompo-nentah topliva kislorod i metan. Kand. Dis. [Working processes in a low-thrust rocket engine on gase-ous fuel components oxygen and methane. Cand. Diss.]. Moscow, MAI Publ., 2014, 167 p.
- Belyakov V. A., Vasilevskiy D. O. [Perspective circuit solutions of liquid rocket engine by expanded cycle]. Vestnik PNIPU. Aerospace science. 2019, Vol. 58, P. 69–86 (In Russ.). Doi: 10.15593/2224-9982/2019-58-06.
- Kovalev B. K. Razvitie raketno-kosmicheskih sistem vyvedeniya [Development of rocket and space launch systems]. Moscow, Bauman Moscow state technical University Publ., 2014, 398 p.
- Dobrovolsky M. V. Zhidkostnye raketnye dvigateli, Osnovy proektirovaniya [Liquid rocket engines, Fundamentals of design]. Moscow, Bauman Moscow state technical University Publ., 2016, 461 p.
- Vasil'ev E. N. [Calculation of heat transfer characteristics of the finned wall]. Siberian Journal of Science and Technology. 2020, Vol. 21, No. 2, P. 226–232 (In Russ.).