Induction of somatic embryo and plantlet regeneration from immature inflorescence culture in kodo millet (Paspalum scrobiculatum L.) under salinity stress conditions
Автор: Roselin Roobavathi M., Vikrant
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 3 т.20, 2024 года.
Бесплатный доступ
Salinity stress is a major abiotic stress factor that affects plant growth, physiological activities and developmental processes. This study involves establishing efficient somatic embryogenesis and plantlet regeneration system using immature inflorescence of kodo millet ( Paspalum scrobiculatum L. cv. TNAU86) under NaCl-salinity stress conditions. To begin with, the immature inflorescence (0.5cm) of kodo millet was excised from the 40-45 days old field growing plants followed by surface sterilization and inoculation in Murashige and Skoog (MS) medium supplemented with the various concentrations of NaCl (10mM, 25mM, 50mM, 75mM, 100mM, 150mM, and 200mM) salt along with 2,4-Dichlorophenoxyacetic acid (2,4-D) (1.5 mg/L). The results reveal that the maximum mean frequency (89.3±0.3%) of somatic embryogenesis was obtained from embryogenic callus that was growing with medium added with NaCl (50mM) while it was found to be the least mean frequency (12±4.1%) with 150mM of NaCl-salt treatments. Moreover, the highest concentration of NaCl (200mM) salinity was found to be lethal and explants were observed to get gradually necrosed. Later, embryogenic calli showing differentiation of somatic embryos were sub-cultured on basal medium supplemented with 0.5mg/L of 6-Benzylaminopurine (BAP) along with respective concentrations of NaCl-salt for the germination of somatic embryos into plantlets. Significantly, 100mM of NaCl-treatment was proved to show strong inhibitions and thus minimum salt tolerant plantlets regeneration (4±2.21%) was recorded. Further, in vitro grown salinity stress tolerant plantlets were transferred to plastic cups and gradually acclimatized under greenhouse conditions.
Immature inflorescence, kodo millet, regeneration, salinity stress, somatic embryogenesis
Короткий адрес: https://sciup.org/143182812
IDR: 143182812
Список литературы Induction of somatic embryo and plantlet regeneration from immature inflorescence culture in kodo millet (Paspalum scrobiculatum L.) under salinity stress conditions
- Abdel-Qader, I., Abudayyeh, O. and Kelly, M.E. (2003) Analysis of Edge-Detection Techniques for Crack Identification in Bridges. Journal of Computing in Civil Engineering, 17(4): 255-263.
- Akashi, R. and Adachi, T. (1992) Somatic embryogenesis and plant regeneration from cultured immature inflorescences of apomictic Dallisgrass (Paspalum dilatatum Poir.). Plant Sci., 82: 213-218.
- Amali, Kingsley and Ignacimuthu (2014) High frequency callus induction and plant regeneration from shoot tip explants of Sorghum bicolor L. Moench original article. Int. J. Pharm. Pharm. Sci., Vol 6, Issue 6, 213-216.
- Anthony, U., Sripriya, G. and Chandra, T.S. (1996) Effect of fermentation on the primary nutrients in finger millet (Eleucine coracana). Journal of Agriculture and Food Chemistry, 44: 2616-2618.
- Arockiasamy, S., Prakash, S. and Ignacimuthu, S. (2001) High regenerative nature of Paspalum scrobiculatum L., an important millet crop. Curr. Sci., 80:496-498.
- Ashraf, M.Y., Akhtar, K., Hussain, F. and Iqbal, J. (2006) Screening of different accession of three potential grass species from Cholistan desert for salt tolerance. Pakisthan Journal of Botany, 38: 15891597.
- Bashir, F., Ali, M., Hussain, K., Majeed, A. and Nawaj, K. (2011) Morphological variations in sorghum (Sorghum bicolor L.) under different levels of Na2SO4 salinity. Botany Research International, 4(1): 01-03.
- Belide, S., Vanhercke, T., Petrie, J.R. and Singh, S.P. (2017) Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. Plant Methods, 13: 109.
- Bi, R., Kou, M.M., Chen, L.G., Mao, S.R. and Wang, H.G. (2007) Plant regeneration through callus initiation from mature embryo of Triticum. Plant Breed, 126.
- Bovo, O.A. and Mroginski, L.A. (1986) Tissue culture in Paspalum (Gramineae) plant regeneration from cultured inflorescences. J. Plant Physiol., 124: 481-492.
- Bovo, O.A. and Mroginski, L.A. (1989) Somatic embryogenesis and plant regeneration from cultured mature and immature embryos of Paspalum notatum (Gramineae). Plant Sci., 65: 217-223.
- Cardona, C.A. and Duncan, R.R. (1997) Callus induction and high frequency plant regeneration via somatic embryogenesis in Paspalum. Crop Sci., 37: 12971302.
- Ceasar, S.A. and Ignacimuthu, S, (2010) Effects of cytokinins, carbohydrates and amino acids on induction and maturation of somatic embryos in kodo millet (Paspalum scorbiculatum Linn.). Plant Cell Tiss. Organ. Cult., 102: 153-162.
- Ceasar, S.A. and Ignacimuthu, S. (2008) Efficient somatic embryogenesis and plant regeneration from shoot apex explant of different Indian genotypes of finger millet (Eleucine coracana (L.) Gaertn). In vitro Cell. Dev. Biol. Plant, 44: 427-435.
- Ceasar, S.A. and Ignacimuthu, S. (2009) Genetic engineering of millets: current status and future prospects. Biotechnol. Lett., 31:799-788.
- Chandra, N. and Kothari, S.L. (1995) Advances in tissue culture and genetic transformation of cereals. J. Indian Bot. Soc.,74: 323-342.
- Chandrasekara, A. and Shahidi, F. (2011) Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. J. Funct. Foods, 3: 159-170.
- Espinoza-Sánchez, E.A., Sánchez-Peña, Y.A., Torres-Castillo, J.A., García-Zambrano, E.A., Ramírez, J.T., Zavala-García, F. and Sinagawa-García, S.R. (2018) Somatic embryogenesis induction from immature embryos of Sorghum bicolor L. (Moench). Phyton-Int. J. Exp. Bot, 87: 105-112.
- George, L. and Eapen, S. (1990) High frequency plant regeneration through direct shoot development and somatic embryogenesis from immature inflorescence cultures of finger millet (Eleusine coracana Gaertn.). Euphytica, 48: 269-274.
- Girgi, M., O'Kennedy, M.M., Morgenstern, A., Mayer, G., Lorz, H. and Oldach, K.H. (2002) Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R.Br. via microprojectile bombardment of scutellar tissue. Mol. Breed, 10: 243-252.
- Goldman, J.J., Hanna, W.W., Fleming, G. and Ozias-Akins (2003) Fertile transgenic pearl millet [Pennisetum glacum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem, inflorescence, and immature embryo-derived embryogenic tissues. Plant Cell Rep., 21: 9991009; DOI 10.1007/s00299-003-0615-8
- Gopalan, C. and Shastri, B. (2009) Nurtitive Value of Indian Foods, Nutritional Institute of Nutrition, Indian Council of Medical Research, Hydrabad, India. 99.
- Hakim, M.A., Juraimi, Begum, M., Hanafi, M.M., Ismail, M.R. and Selamat, A. (2010) Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). African journal of biotechnology, 9(13): 1911-1918.
- Hernández, J. A. (2019) Salinity Tolerance in Plants: Trends and Perspectives. International Journal of Molecular Sciences, 20(10): Article 10.
- Hoque, E.H. and Mansfield, J.W. (2004) Effect of genotype and explant age on callus induction and subsequent plant regeneration from root derived callus of Indica rice genotypes. Plant Cell Tiss. Org. Cult., 78: 217- 223.
- Jain, S., Bhatia, G., Barik, R., Kumar, P., Jain, A. and Dixit, V.K. (2010) Anti-diabetic activity of Paspalum scrobiculatum Linn. in alloxan induced diabetic rats. J. Ethnopharmacol ., 127(2): 325-8.
- Jamil, M., Lee, D.B., Jung, K.Y. Ashraf, M., Lee, S.C. and Rha, E.S. (2006) Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. Journal of central European agriculture, 7(2): 273-282.
- Jha, P., Yadav, C.B., Anjaiah, V. and Bhat, V. (2009) In vitro plant regeneration through somatic embryogenesis and direct shoot organogenesis in Pennisetum glaucum (L.) R, Br. In vitro Cell. Dev. Biol. Plant, 45: 145-154.
- Kaur, P. and Kothari, S.L. (2003) Embryogenic callus induction and efficient plant regeneration from root cultures of kodo millet. Phytomorphology, 53:4956.
- Kaur, P. and Kothari, S.L. (2004) In vitro culture of kodo millet: influence of 2,4-D and picloram in combination with kinetin on callus initiation and regeneration. Plant Cell Tiss. Org. Cult., 77: 73-79.
- Kavi Kishore, P.B., Rao, A.M., Dha, A.C. and Naidu, K.R. (1992) Plant regeneration in tissue culture of some millets. Ind. J. Exp. Biol., 30:729-733.
- Kiran, P., Denni, M. and Daniel, M. (2014) Anti-diabetic Principles, Phospholipids and Fixed Oil of Kodo Millet (Paspalum scrobiculatum Linn.). Indian Jr. of Appl. Res., 4 (2): 13-15.
- Kothari-Chajer, A., Sharma, M., Kachwaha, S. and Kothari, S.L. (2008) Micronutrient optimization results into highly improved in vitro plant regeneration in kodo (Paspalum srobiculatumL.) and finger (Eleucine coracana (L.) Gaertn) millets. Plant Cell Tiss. Org. Cult., 94: 105-112.
- Krishnamoorthy, L., Serraj, R., Hash, A.J. and Reddy, B.V. (2007) Screening sorghum genotypes for salinity tolerant biomass production. Euphytica,156:15-24.
- Latha, A.M., Rao, K.V. and Reddy, V.D. (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci., 169: 657-667.
- Lu, C and Vasil, I.K. (1982) Somatic embryogenesis and plant regeneration in tissue cultures of Panicum maximum Jacq. Am.J. Bot., 69: 77.
- Lu, C., Vasil, V. and Vasil, I.K. (1983) Improved efficiency of somtic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.). Theoretical and applied genetics, 66(3-4):285-9.
- Mohanty, B.D., Gupta, S.D. and Ghosh, P.D. (1985) Callus initiation and plant regeneration in ragi (Eleusine coracana (L.) Garetn). Plant Cell Tiss. Org. Cult., 5: 147-150.
- Mukami, A., Ng'etich, A., Syombua, E., Oduor, R. and Mbinda, W. (2020) Varietal differences in Physiological and biochemical responses to salinity stress in six finger millet plants. Physiol. Mol. Biol. Plants, 26: 1569-1582; DOI: 10.1007/s12298-020-00853-8
- Munns, R.C. ( 2002) Comparative physiology of salt and water stress. Plant Cell Environment, 25: 239-250.
- Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15: 473-497.
- Murthy, A.V.S. and Subramanyam, N.S.A. (1989) Textbook of Economic Botany. (Wiley Eastern Limited), New Delhi.
- Mythili, P., Madhavi, A., Reddy, V.D. and Seetharam, N. (2001) Efficient regeneration of pearl millet Pennisetum glacum (L.) from shoots tip cultures. Ind J Exp Biol., 39:1274-12.
- Mythili, P.K., Satyavathi, V., Pavankumar, G., Rao, M.V.S. and Manga, V. (1997) Genetic analysis of short term callus culture and morphogenesis in pearl millet, Pennisetum glaucum, Plant Cell. Tiss. Organ. Cult, 50: 171-178.
- Nayak, P. and Sen, S.K. (1989) Plant regeneration through somatic embryogenesis from suspension cultures of a minor millet, Paspalum scrobiculatum L. Plant Cell Rep., 8: 296-299.
- Nethra, N., Gowda, R. and Gowda, P.H.R. (2009) Influence of culture medium on callus proliferation and morphogenesis in finger millet. In: Tadele Z. (ed) New approaches to plant breeding of orphan crops in Africa. Proceedings of an International Conference, 19-21. Bern, Switzerland. Univ. Bern., pp. 167-178.
- O'Kennedy, M.M., Grootboom, A. and Shewry, R.R. (2006) Harnessing sorghum and millet biotechnology for food and health. J.Cereal Sci., 44: 224-235.
- Parvathy, K. and Thayumanavan, B. (1995) Homologies between prolamins of different minor millets. Plant Foods Hum. Nutr., 48:119-126.
- Rao, B.R., Nagasampige, M.H. and Ravikiran, M. (2011) Evaluation of nutraceutical properties of selected small millets. J. Pharm. Bioallied. Sci., 3:277-279.
- Ravindran, G. (1992) Seed proteins of millets: amino acid composition, proteinase inhibitors and in vitro digestibility. Food Chemistry, 44(1): 13-17.
- Sankhla, A., Davis, T.D., Sankhla, D., Sankhla, N., Upadhyaya, A. and Joshi, S. (1992) Influence of growth regulators on somatic embryogenesis, plantlet regeneration, and post-transplant survival of Echinochloa frumentacea. Plant Cell Rep., 11: 368-371.
- Sathyavathi, V.V., Manga, V., Muktinutalapati, V., Subba Rao, Malladi Chittibabu (2016) Genetic analysis of reciprocal differences in the inheritance of in vitro characters in pearl millet. Genetics and molecular biology, 39: 54-61.
- Sonia Plaza-Wüthrich and Zerihun Tadele (2012) Millet improvement through regeneration and transformation. Biotechnology and Molecular Biology Review, Vol. 7(2): pp. 48-61.
- Srivastav, S. and Kothari, S.L. (2002) Embryogenic callus induction and high frequency plant regeneration in pearl millet. Cer. Res. Commun., 30: 69-74.
- Vikrant (2015). Induction of Somatic Embryos from Mature Embryo Culture under Abiotic Stress and Estimation of Proline Status in a Millet Crop, Paspalum scrobiculatum L. International Journal of Advanced Biotechnology and Research (IJBR); ISSN 0976-2612, Online ISSN 2278-599X,Vol 6: Issue1, pp96-109://www.http bipublication.com
- Vikrant and Rashid (2001) Direct as well as indirect somatic embryogenesis from immature (unemerged) inflorescences of a minor millet Paspalum scrobiculatum L. Euphytica, 120: 167172.
- Vikrant and Rashid (2002a) Somatic embryogenesis from immature and mature embryos of a minor millet Paspalum scrobiculatum L. Plant Cell Tiss. Org. Cult., 69: 71-77.
- Vikrant and Rashid (2003) Somatic embryogenesis from mesocotyl and leaf base segments of Paspalum scrobiculatum L. minor miller. In Vitro Cell Dev. Biol. Rep., 39:485-489.
- Vishnoi, R.K and Kothari, S.L. (1996) Somatic embryogenesis and efficient plant regeneration in immature inflorescence culture of Setaria italica (L.) Beauv. Cereal Res. Commun.,24: 291-297.
- Wernicke, W. and Brettell, R. (1980) Somatic embryogenesis from Sorghum bicolor leaves. Nature, 287: 138-139.
- Xu, Z., Wang, D., Yang, L. and Wei, Z. (1984) Somatic embryogenesis and plant regeneration in callus cultured immature inflorescence of Setaria italica. Plant Cell Rep., 3: 144-150.
- Yemets, A.I., Klimkina, L.A., Tarassenko, L.V. and Blume, Y.B. (2003) Efficient callus formation and plant regeneration of goosegrass (Eleusine indica (L.) Gaertn.). Plant Cell. Rep., 21: 503-510.