Influence of magnetic field on the dielectric characteristics in manganese sulfide substituted with thulium

Автор: A.M. Kharkov, S.S. Aplesnin, S.O. Konovalov, A.N. Pavlova, O.S. Nikitinskiy

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Technological processes and material science

Статья в выпуске: 1 vol.24, 2023 года.

Бесплатный доступ

The properties of a solid solution of thulium-substituted manganese sulfide prepared by melting the ini-tial pure samples of manganese sulfide and thulium sulfide are studied. X-ray diffraction analysis was car-ried out. The face-centered cubic lattice is determined, and the decrease in the intensity of the peaks is found. Dielectric permittivity was measured in the frequency range 102–106 Hz and temperatures 300–500 K in magnetic fields up to 12 kOe in TmxMn1-xS solid solutions (0 < x < 0.15). From the frequency depend-ence of the permittivity, the relaxation time and the relaxation mechanism of the dipole moments are found. The leakage current is excluded, and the contribution of migration polarization due to charges in the re-gion with chemical phase separation is estimated. The real and imaginary components of the permittivity of TmxMn1-xS samples are described in the Debye model. The maximum of the imaginary component of the permittivity shifts towards higher frequencies upon heating, and the relaxation time is described by the Ar-rhenius function. Dielectric losses are caused by electron-phonon interaction. The frequency of the crosso-ver from Debye relaxation to relaxation conduction associated with the absorption and emission of pho-nons is found. The crossover frequency increases as the sample is heated according to a power law. In a magnetic field, the permittivity decreases and the largest change of 2.5 % is achieved at T = 450 K. At oth-er temperatures, the magnetocapacitance does not exceed 0.5 %. The shift of the maximum of the imagi-nary component of the permittivity to low frequencies in a magnetic field leads to a change in the sign of dielectric losses from positive to negative. A qualitative difference in ε(ω) is established in the vicinity of the concentration of thulium ion flow through the FCC lattice, where the permittivity is not described in the Debye model and there is no magnetocapacitance. The mechanism for reducing dielectric losses in a mag-netic field is determined.

Еще

Permittivity, relaxation time, Debye model, magnetocapacitance

Короткий адрес: https://sciup.org/148329686

IDR: 148329686   |   DOI: 10.31772/2712-8970-2023-24-1-195-203

Список литературы Influence of magnetic field on the dielectric characteristics in manganese sulfide substituted with thulium

  • Aplesnin S. S., Udod L. V., Sitnikov M. N. et al. [Correlation of magnetic and transport proper-ties with polymorphic transitions in bismuth pyrostannate Bi2(Sn1−xCrx)2O7]. Solid State Physics. 2015, Vol. 57, Is. 8, P. 1590–1595 (In Russ.).
  • Eerenstein W., Mathur N. D., Scott J. F. Multiferroic and magnetoelectric materials. Nature. 2006, Vol. 442, P. 759.
  • Zeches R. J., Rossell M. D., Zhang J. X. et al. A Strain-Driven Morphotropic Phase Boundary in BiFeO3. Science. 2009, Vol. 326, P. 977.
  • Aplesnin S. S., Ryabinkina L. I. Abramova G. M. et al. [Spin-dependent transport in a single crystal α-MnS]. Solid State Physics. 2004, Vol. 46, No. 11, P. 2000–2005 (In Russ.).
  • Petrakovsky G. A., Ryabinkina L. I., Velikanov D. A. et al. [Low-temperature electronic and magnetic transitions in an antiferromagnetic semiconductor Cr0.5Mn0.5S]. Solid State Physics. 1999, Vol. 41, No. 9, P. 1660–1664 (In Russ.).
  • Aplesnin S. S., Bandurina O. N., Ryabinkina L. I., Romanova O. B. et al. [The relationship of magnetic and electrical properties of chalcogenides MnSe1-xTex]. News of the Russian Academy of Sci-ences. Physical Series. 2010, Vol. 74, No. 5, P. 741–743 (In Russ.).
  • Subramanian M. A., Toby B. H., Ramirez A. P. et al. Colossal Magnetoresistance Without Mn3+/Mn4+ Double Exchange in the Stoichiometric Pyrochlore Tl2Mn2O7. Science. 1996, Vol. 273, P. 81.
  • Spaldin A. N., Cheong S.-W., Ramesh R. Multiferroics: Past present and future. Phys. Today. 2010, Vol. 63, P. 38.
  • Song J. F., Zhuang S. H., Martin M. et al. Interfacial-Strain Controlled Ferroelectricity in Self-Assembled BiFeO3 Nanostructures. Adv. Funct. Mater. 2021, Vol. 31, P. 2102311.
  • Zhang C. C., Dai J. Q., Liang X. L. Enhanced ferroelectric properties of (Zn, Ti) equivalent co-doped BiFeO3 films prepared via the sol-gel method. Ceram. Int. 2021. Vol. 47. P. 16776.
  • Mumtaz F., Nasir S., Jaffari G. H. et al. Chemical pressure exerted by rare earth substitution in BiFeO3: Effect on crystal symmetry, band structure and magnetism. J. Alloy. Compd. 2021, Vol. 876, P. 160178.
  • Yamada Y., Kitsuda K., Nohdo S., Ikeda N. Charge and spin ordering process in the mixed-valence system LuFe2O4: Charge ordering. Phys. Rev. B 2000, Vol. 62, P. 12167.
  • Maxwell J. C. Treatise on Electricity and Magnetism. 3rd ed., Dover, New York, 1991, P. 5–531.
  • Parish M. M., Littlewood P. B. Magnetocapacitance in Nonmagnetic Composite Media. Phys. Rev. Lett. 2008, Vol. 101, P. 166602.
  • Romanova O. B., Aplesnin S. S., Sitnikov M. N., Udod L. V. [Magnetotransport effects and electron phase separation in manganese sulfides with electron-hole doping]. ZhETF. 2021, Vol. 159, P. 1–14 (In Russ.). Doi: 10.31857/S0044451021030000.
  • Aplesnin S. S., Sitnikov M. N., Kharkov A. M. et al. Influence of induced electrical polariza-tion on the magnetoresistance and magnetoimpedance in the spin-disordered TmxMn1-xS solid solu-tion. Phys. Status Solidi B. 2019, Vol. 256, P. 1900043. Doi: 10.1002/pssb.201900043.
  • Sawicki B., Tomaszewicz E., Gron T. et al. Dipole relaxation process and giant dielectric per-mittivity in Eu3+-doped CdMoO4 single crystal. J. Materiomics. 2021, Vol. 7, No. 4, P. 845.
  • Aplesnin S. S., Masyugin A. N., Volochaev M. N., Ishibashi T. Coexistence of the electric po-larization and conductive current in the bismuth–neodymium ferrite garnet films. J Mater Sci: Mater Electron. 2021, Vol. 32, P. 3766–3781. Doi: https://doi.org/10.1007/s10854-020-05121-9.
  • Udod L. V., Aplesnin S. S., Sitnikov M. N., Molokeev M. S. Dielectric and electrical proper-ties of polymorphic bismuth pyrostannate Bi2Sn2O7. Phys. Sol. Stat. 2014, Vol. 56, No. 7, P. 1315.
  • Efros A. L. On the theory of a.c. conduction in amorphous semiconductors and chalcogenide glasses. Philos. Mag. B. 1981, Vol. 43, P. 829.
  • Aplesnin S. S. Nonadiabatic interaction of acoustic phonons with spins S = 1/2 in the two-dimensional Heisenberg model. ZhETF. 2003, Vol. 97, No. 5, P. 969.
  • Osorio-Guillen J., Lany S., Barabash S. V., Zunger A. Magnetism without Magnetic Ions: Per-colation, Exchange, and Formation Energies of Magnetism-Promoting Intrinsic Defects in CaO. Phys. Rev. Lett. 2006, Vol. 96, P. 107203.
Еще
Статья научная