Influence of nitrogen compounds on growth and the nitric oxide (NO) content in roots of etiolated pea seedlings

Автор: Glyanko A.K., Mitanova N.B., Ischenko A.A.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.8, 2012 года.

Бесплатный доступ

The data on the influence of different concentration of sodium nitroprusside (SNP), potassium nitrate (KNO3), sodium nitrite (NaNO2) and L-arginine on 3 days-old etiolated pea seedlings growth and nitric oxide (NO) content in roots of these seedlings are obtained. It is found that 24 h exposition of seedlings to SNP showed negative influence on growth at a 4 mM dose; SNP at 0.05 mM doze stimulates their growth and 0.1 mM doze did not influence on seedlings growth. Using KNO3 negative influence on growth at the same exposition was showed only at superhigh concentration - 20 mM. Using NaNO2 negative influence on growth was shown at a doze of 2 mM but concentration of 0.1 and 0.5 mM did not influence on it. The exposition of seedlings to L-arginine caused growth inhibition already at concentration of 0.5 mM and reached maximum at 4 mM doze. Determination of NO level in roots using fluorescent probe DAF-2DA in variants with the greatest growth inhibition has showed, that the maximal inhibition of growth in roots and highest level of NO in roots in variants with SNP (4 mM) and NaNO2 (2 mM) was observed. In variants with KNO3 (20 mM) and L-arginine (4 mM) maximal growth inhibition did not coincide with NO accumulation and was observed after 30 min after the beginning of plants exposition and further it was reduced in 24 h. Results are discussed in connection with possible influence NO and participation of the investigated connections in generation nitric oxide in roots of pea seedlings.

Еще

L-arginine, growth, etiolated seedlings, pea, sodium nitroprusside, potassium nitrate, sodium nitrite, nitric oxide

Короткий адрес: https://sciup.org/14323693

IDR: 14323693

Список литературы Influence of nitrogen compounds on growth and the nitric oxide (NO) content in roots of etiolated pea seedlings

  • Васильева Г.Г., Ищенко А.А., Глянько А.К. (2011). Физиологическая роль кальция при бобово-ризобиальном симбиозе. Журнал стресс-физиологии и биохимии, 7 (4), 398-414.
  • Викторова Л.В., Максютова Н.Н., Трифонова Т.В., Андрианов В.В. (2010) Образование пероксида водорода и оксида азота при введении нитрата и нитрита в апопласт листьев пшеницы. Биохимия, 75, 117-124.
  • Глянько А.К., Васильева Г.Г. (2007). Особенности действия активных форм кислорода и азота при бобово-ризобиальном симбиозе. Вестник Харьковского нац. аграрного ун-та, серия Биология, 3 (12), 27-41.
  • Глянько А.К., Митанова Н.Б., Макарова Л.Е., Васильева Г.Г. (2009). Влияние азотсодержащих соединений на рост клубеньковых бактерий в культуре и их взаимодействие с корнями проростков гороха. С.-х. биология, № 1, 83-88.
  • Глянько А.К., Митанова Н.Б., Степанов А.В. (2012). Влияние факторов среды на генерацию оксида азота (NO) в корнях этиолированных проростков гороха. Прикладная биохимия и микробиология, 48, 95-102.
  • Колупаев Ю.Е., Карпец В.Е. (2009). Участие оксида азота (NO) в трансдукции сигналов абиотических стрессоров у растений. Вестник Харьковского нац. аграрного ун-та. Серия Биология, 3 (18), 6-19.
  • Медведев С.С. (2010). Кальциевая сигнальная система растительной клетки. В кн.: Клеточная сигнализация (ред. Гречкин А.Н.), Казань, изд-во ФЭН, с. 26-36.
  • Реутов В.П., Сорокина Е.Г., Косицын Н.С. (2005). Проблемы оксида азота и цикличности в биологии и медицине. Успехи соврем. биологии, 125, 41-65.
  • Alamillo J.M., and Garcia-Olmedo F. (2001). Effects of urate, a natural inhibitor of peroxynitrite-mediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. Plant J., 25, 529-540.
  • Baron C., and Zambryski P.C. (1995). The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu. Rev. Genet., 29, 107-129.
  • Besson-Bard A., Pugin A., and Wendehenne D. (2008). New insights into nitric oxide signaling in plants. Annu. Rev. Plant Biol., 59, 21-39.
  • Clementi E. (1998). Role of nitric oxide and its intracellular signaling pathways in the control of Ca2+ homeostasis. Biochem. Pharm., 55, 713-718.
  • Corpas F.J., Barroso J.B., Carreras A., Valderrama R., Palma J.M., Leon A.M., Sandalio L.M., and del Rio L. (2006). Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta, 224, 246-254.
  • Corpas F.J., Barroso J.B., Carreras A., Quiros M., Leon A.M., Romero-Puertas M.C., Esteban F.J., Valderrama R., Palma J.M., Sandalio L.M., Gomez M., and del Rio L.A. (2004). Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol., 136, 2722-2733.
  • Correa-Aragunde N., Graziano M., and Lamattina L. (2004). Nirric oxide plays a central role in determining lateral root development in tomato. Planta, 218, 900-905.
  • Courtois C., Besson A., Dahan J., Bourque S., Dobrowolska G., Pugin A., and Wendehenne D. (2008). Nitric oxide signaling in plants: interplays with Ca2+ and protein kinases. J. Exp. Bot., 59, P. 155-163.
  • Ferguson B.J., Indrasumunar A., Hayashi S., Lin M.-H., Lin Y.-H., Reid D.E., and Gresshoff P. (2010). Molecular analysis of legume nodule development and autoregulation. J. Integr. Plant Biol., 52, 61-76.
  • Feechan A., Kwon E., Yun B.W., Wang Y., Pallas J.A., and Loake G.J. (2005). A central role for S-nitrosothiols in plant disease resistance. Proc. Nat. Acad. Sci. (USA), 102, 8054-8059.
  • Foissner I., Wendenhenne D., Langebartels C., and Durner J. (2000). In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J., 23, 817-824.
  • Gould K.S., Lamotte O., Klinguer A., Pugin A., and Wendehenne D. (2003). Nitric oxide production in tobacco leaf cell: a generalized stress response? Plant Cell Environ., 26, 1851-1862.
  • Glyan'ko A.K., and Vasil'eva G.G. (2010). Reactive oxygen and nitrogen species in legume-rhizobial symbiosis: a review. Appl. Biochem. Microbiol., 46, 15-22.
  • Glyan'ko A.K., Mitanova N.B., and Stepanov A.V. (2010). The physiological role of nitric oxide (NO) in plants. Вестник Харьковского нац. аграрного ун-та. Серия Биология, 1 (19), 6-20.
  • Yamasaki H., and Sakihama Y. (2000). Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett., 468, 89-92.
  • Yamasaki H., and Cohen M.F. (2006). NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends Plant Sci., 11, 522-524.
  • Yamasaki H., Shimoji H., Ohshiro Y., and Sakihama Y. (2010). Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria. Nitric Oxide, 5, 261-270.
  • Lamb C., and Dixon R.A. (1997). The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, 251-275.
  • Lamattina L., Garcia-Mata C., Graziano M., and Pagnussat G. (2003). Nitric oxide: the versatility of an extensive signal molecule. Annu. Rev. Plant Biol., 54, 109-136.
  • Meyer C., Lea U.S., Provan F., Kaiser W.M., and Lillo C. (2005). Is nitrate reductase a major player in the plant NO (nitric oxide) game? Photosynth. Res., 83, 181-189.
  • Mur L.A.J., Carver T.L.W., and Prats E. (2006). NO way to live: the various roles of nitric oxide in plant-pathogen interactions. J. Exp. Bot., 57, 489-505.
  • Molina-Favero C., Creus C.M., Lanteri M.L., Correa-Aragunde N., Lombardo M.C., Barassi C.A., and Lamattina L. (2007). Nitric oxide and plant growth promoting rhizobacteria: common features influencing root growth and development. Adv. Bot. Res., 46, 1-33.
  • Mur L.A.J., Sivakumaran A., Mandon J., Cristescu S. M., Harren F.J.M., and Hebelstrup K.H. (2012). Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens. J. Exp. Bot., 63, 4375-4387.
  • Nakatsubo N., Kojima H., Kikuchi K., Nagoshi H., Hirata Y., Maeda D., Imai Y., Irimura T., and Nagano T. (1998). Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett., 427, 263-266.
  • Neill S.J., Desikan R., and Hancock J.T. (2003). Nitric oxide signaling in plants. New Phytol., 159, 11-35.
  • Neill S., Bright J., Desikan R., Hancock J., Harrison J., and Wilson I. (2008). Nitric oxide evolution and perception. J. Exp. Bot., 59, 25-35.
  • Ohwaki Y., Kawagishi-Kobayashi M., Wakasa K., Fujihara S., and Yoneyama T. (2005). Induction of class-1 non-symbiotic haemoglobin genes by nitrate, nitrite and nitric oxide in cultured rice cells. Plant Cell Physiol., 46, 324-331.
  • Pagnussat G.C., Lanteri M.L., and Lamattina L. (2003). Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol., 132, 1241-1248.
  • Perazzolli M., Dominici P., Romero-Puertas M.G., Zago E., Zeier J., Sonjda M., Lamb C., and Delledonne M. (2004). Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell, 16, 2785-2794.
  • Perazzolli M., Romero-Puertas M.C., and Delledonne M. (2006). Modudulation of nitric oxide bioactivity by plant haemoglobins. J. Exp. Bot., 57, 479-488.
  • Rockel P., Strube F., Rockel A., Wildt J., and Kaiser W.M. (2002). Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot., 53, 103-110.
  • Sanchez C., Cabrera J.J., Gates A.J., Bedmar E.J., Richardson D.J., and Delgado M.J. (2011). Nitric oxide detoxification in the rhizobial-legume symbiosis. Biochem. Soc. Transactions, 39, 184-188.
  • Shimoda Y., Nagata M., Suzuki A., Abe M., Sato S., Kato T., Tabata S., Higashi S., and Uchiumi T. (2005). Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic haemoglobin in Lotus japonicus. Plant Cell Physiol., 46, 99-107.
  • Stohr C., Strube F., Marx G., Ulrich W.R., and Rocker P. (2001). A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta, 212, 835-841.
  • Storh C., and Stremlau S. (2006). Formation and possible roles of nitric oxide in plant roots. J. Exp. Bot., 57, 463-470.
  • Tewari R.K., Kim S., Hahn E-J., and Paek K-Y. (2008). Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng. Plant Biotech. Rep., 2, 113-122.
  • Valderrama R., Corpas F.J., Carreras A., Fernandez-Ocana A., Chaki M., Luque L., Gomez-Rodriguez M.V., Colmenero-Varea P., del Rio L.A., and Barroso J.B. (2007). Nitrosative stress in plants. FEBS Lett., 581, 453-461.
  • Vieweg M.F., Hohnjec N., and Kuster H. (2005). Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula. Planta, 5, 757-766.
  • Wildt J., Kley D., Rockel A., Rockel P., and Segschneider H.J. (1997). Emission of NO from several higher plant species. J. Geophys. Res., 102, 5919-5927.
  • Xiong J., Fu G., Yang Y., Zhu C., and Tao L. (2012). Tungstate: is it really a specific nitrate reductase inhibitor in plant nitric oxide research? J. Exp. Bot., 63, 33-41.
Еще
Статья научная