Information-measuring system of pyrometric type for small-sized unmanned aircraft

Автор: Akzigitov A. R., Pisarev N. S., Statsenko N. I., Neverov U. A., Akzigitov R. A.

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Aviation and spacecraft engineering

Статья в выпуске: 4 vol.20, 2019 года.

Бесплатный доступ

A new trend of science and technology is now rapidly developing both in Russia and abroad – the development of miniature unmanned aerial vehicles. The key system of on-board control equipment (avionics) of an unmanned aerial vehicle (UAV) is the orientation system for determining UAV attitude relative to reference system. In small-size UAV, we can meet the application of strapdown attitude reference systems, magnetometric, pyrometric, video systems, etc. Rapid development of mini- and micro-UAVs requires the development of information-measuring systems (operating on different physical principles) in order to determine UAV attitude parameters in flight. With UAV mass and wingspan reduction, there are growing requirements for these systems, concerning the accuracy of positioning parameters and more compact dimensions. Manufacturing of most information-measuring and control systems of manned aircraft and heavy UAVs rely on traditionally used gyroscopes and accelerometers. They are complex fine-mechanics instruments of considerable power consumption, rather large size, weight and high cost. A significant improvement of the accuracy in UAV angular coordinates determination is achieved by integrating orientation systems of various types. The use of GPS / GLONASS signals also improves the accuracy and reliability of determining UAV angular coordinates and supplies the additional function of measuring its geographical coordinates.

Еще

Information-measuring system, unmanned aerial vehicle, pyrometric sensor.

Короткий адрес: https://sciup.org/148321706

IDR: 148321706   |   DOI: 10.31772/2587-6066-2019-20-4-452-457

Список литературы Information-measuring system of pyrometric type for small-sized unmanned aircraft

  • Gal'kevich A. I. Nizkoorbital'naya kosmicheskaya sistema personal'noy sputnikovoy svyazi i peredachi dannykh [Low-orbit space system of personal satellite communication and data transmission]. Moscow, Yulis Publ., 2013, 170 p. (In Russ.).
  • Kuzovnikov A. V., Testoedov N. A., Agureev V. A. [Problems of development of low-orbit multifunction personal satellite communication system GONETSD1M]. Vestnik SibGAU. 2013, Vol. 52, No. 6, P. 158–163 (In Russ.).
  • Akzigitov A. R., Statsenko N. I., Pisarev N. S., Efimova A. N., Andronov A. S. Aircraft monitoring in remote areas via the low-orbit satellite communications system IRIDIUM along with the GSM data transmission through ASC-6 telemetry terminal. Siberian Journal of Science and Technology. 2017, Vol. 18, No. 3, P. 552–557.
  • Shevchuk D. V. [The time estimate message delivery system "GONETS" for various variants of construction of the orbital group]. Radiotekhnika. 2012, No. 11, P. 127–130 (In Russ).
  • Mukhin I. E., Shevtsov A. N., Shchitov A. N. [Prospects for the use of the multifunctional personal satellite communication system MSPSC GONETS]. Infokommunikatsii i informatsionnaya bezopasnost': sostoyanie, problemy i puti resheniy a: Materialy II Vserossiyskoy nauchno-prakticheskoy konferentsii [Infocommunication and information security: status, problems and ways of solution: materials of the II all-Russian scientific-practical conference]. Moscow, 2015, P. 151–155 (In Russ.).
  • Zharov A. A. [Multifunctional system for personal satellite communications “Gonets-D1M”: state and prospects of development]. Tekhnologii i sredstva svyazi. 2013, Vol. 2, No. 6, P. 72–78 (In Russ.).
  • Akimov A., Poleshchuk V. [Spatial accessibility and operational readiness of the low-orbital group of communication spacecraft]. Tekhnologii i sredstva svyazi. 2014, Vol. 2, No. 6, P. 76–81 (In Russ.).
  • Antamoshkin O. A. [Design of highly reliable real-time systems]. Trudy MAI. 2011, No. 45, P. 61–63 (In Russ.).
  • Marinich A. N., Pripotnyuk A. V., Ustinov Yu. M. [Monitoring of ships along the Northern sea route using satellite communication systems]. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota im. Admirala S. O. Makarova. 2016, No. 6, P. 184–205 (In Russ.).
  • Akimov A., Shevchuk D., Danilov D. [Efficiency of information transfer in low-orbit communication system with message transfer onboard spacecraft]. Tekhnologii i sredstva svyazi. 2015, No. 1, P. 69–72 (In Russ.).
  • Akimov A., Shevchuk D., Danilov D. [Efficiency of information transfer in low-orbit communication system with message transfer onboard spacecraft]. Tekhnologii i sredstva svyazi. 2015, No. 2, P. 72–75 (In Russ.).
  • Tsisar L. [The best satellite communications expands standards]. Tekhnologii i sredstva svyazi. 2008, No. 64, P. 40–42 (In Russ.).
  • Bisterfel'd O. A. [The algorithm for moving data through communication channel with the segment of satellite communications]. Nauka i obrazovanie. 2014, No, 10, P. 41–43 (In Russ.).
  • Kartavtsev D. V., Oblienko A. V., Oblienko M. V. [Organization of communication via satellite stations such as VSAT]. Pozharnaya bezopasnost': problemy i perspektiv. 2014, No, 5, P. 360–363 (In Russ.).
  • Nazarov S. N. [Improving communication efficiency of mobile subscribers through the integration of cellular and satellite communication systems]. Vestnik Ul'yanovskogo gosudarstvennogo tekhnicheskogo universiteta. 2010, No. 52, P. 53–56 (In Russ.).
Еще
Статья научная