Insight into plasmonics: resurrection of modern-day science (invited)

Бесплатный доступ

Plasmonics is a field of research and technology that focuses on the interaction between light and free electrons in a metal structure called plasmon. The study of plasmonics has gained significant attention in recent years due to its potential for several applications and its ability to manipulate light at nanoscale dimensions. Plasmonics enables the control of light at the nanoscale, far beyond the diffraction limit of conventional optics. This allows for the development of new devices and technologies with enhanced performance and functionality. In this paper, recent advances in plasmonics in medicine, agriculture, agriculture, environmental monitoring, lasers and solar energy harvesting are reviewed. Despite these promising prospects, plasmonic devices must overcome obstacles such as significant energy losses, complicated production processes, and the need for better material characteristics. Plasmonics will continue to advance because of ongoing work in nanotechnology, material science, and engineering, which will make it a more significant field with a wide range of usages in the future. In the end, the advantages and the limitations related to the realization of plasmonic devices in the real world are discussed.

Еще

Plasmonics, surface plasmon polariton, surface plasmon resonance, waveguide, sensors, solar energy harvesting, environmental monitoring, agriculture

Короткий адрес: https://sciup.org/140303294

IDR: 140303294   |   DOI: 10.18287/2412-6179-CO-1376

Список литературы Insight into plasmonics: resurrection of modern-day science (invited)

  • Ringe E, Sharma B, Henry A-I, Marks LD, Van Duyne RP. Single nanoparticle plasmonics. Phys Chem Chem Phys 2013;15: 4110-4129. DOI: 10.1039/C3CP44574G.
  • Boriskina SV, Cooper TA, Zeng L, Ni G, Tong JK, Tsurimaki Y, Huang Y, Meroueh L, Mahan G, Chen G. Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities. Adv Opt Photonics 2017;9(4): 775-827. DOI: 10.1364/AOP.9.000775.
  • Kasani S, Curtin K, Wu N. A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics2019; 8(12): 2065-2089. DOI: 10.1515/nanoph-2019-0158.
  • Bezus EA, Doskolovich LL, Kazanskiy NL, Soifer VA, Kharitonov SI, Pizzi M, Perlo P. The design of the diffractive optical elements to focus surface plasmons. Computer Optics 2009; 33(2): 185-192.
  • Doskolovich LL, Kazanskiy NL, Kharitonov SI. Integral representations of solutions of Maxwell's equations in the form of the spectrum of surface electromagnetic waves. Computer Optics 2008; 32(2): 151-154.
  • Bezus EA, Doskolovich LL, Kazanskiy NL, Soifer VA, Kharitonov SI. Design of diffractive lenses for focusing surface plasmons. J Opt 2010; 12(1): 015001. DOI: 10.1088/2040-8978/12/1/015001.
  • Bezus EA, Doskolovich LL, Kazanskiy NL. Scattering suppression in plasmonic optics using a simple two-layer dielectric structure. Appl Phys Lett 2011; 98(22): 221108. DOI: 10.1063/1.3597620.
  • Bezus EA, Bykov DA, Doskolovich LL. Antireflection layers in low-scattering plasmonic optics. Photonics Nanostruct 2015; 14: 101-105. DOI: 10.1016/j.photonics.2015.02.003.
  • Bezus E, Kadomina E, Doskolovich L. Suppression of parasitic scattering of surface plasmon polariton propagating over a rectangular step. 2021 Int Conf on Information Technology and Nanotechnology (ITNT) 2021: 1-4. DOI. 10.1109/ITNT52450.2021.9649382.
  • Bezus EA, Bykov DA, Doskolovich LL, Kadomina EA. Integrated resonant diffraction gratings for Bloch surface waves. Opt Mem Neural Netw 2022; 31: 8-13. DOI: 10.3103/S1060992X22050034.
  • Kashapov AI, Bezus EA, Bykov DA, Doskolovich LL. Plasmonic generation of spatiotemporal optical vortices. Photonics 2023; 10(2): 109. DOI: 10.3390/photonics10020109.
  • Bozhevolnyi S, Garcia-Vidal F. Focus on plasmonics. New J Phys 2008;10: 105001. DOI: 10.1088/1367-2630/10/10/105001.
  • Kazanskiy NL, Butt MA, Khonina SN. Optical computing: Status and perspectives. Nanomaterials 2022;12(13): 2171. DOI: 10.3390/nano12132171.
  • Eppenberger M, Messner A, Bitachon BI, Heni W, Blatter T, Habegger P, Destraz M, De Leo E, Meier N, Del Medico N, Hoessbacher C, Baeuerle B, Leuthold J. Resonant plasmonic micro-racetrack modulators with high bandwidth and high temperature tolerance. Nat Photonics 2023; 17: 360-367. DOI: 10.1038/s41566-023-01161-9.
  • Butt MA, Kazanskiy NL, Khonina SN. Miniaturized design of a 1 × 2 plasmonic demultiplexer based on metal–insulator–metal waveguide for telecommunication wavelengths. Plasmonics 2023;18: 635-641. DOI: 10.1007/s11468-023-01795-z.
  • Divya J, Selvendran S, Sivanantha Raja A, Sivasubramanian A. Surface plasmon based plasmonic sensors: A review on their past, present and future. Biosens Bioelectron X 2022; 11: 100175. DOI: 10.1016/j.biosx.2022.100175.
  • Butt MA. Plasmonic sensor realized on metal-insulator-metal waveguide configuration for refractive index detection. Photonics Lett Pol 2022; 14(1): 1-3. DOI: 10.4302/plp.v14i1.1122.
  • Butt MA. Numerical assessment of a metal-insulator-metal waveguide-based plasmonic sensor system for the recognition of tuberculosis in blood plasma. Micromachines 2023; 14(4): 729. DOI: 10.3390/mi14040729.
  • Irfan M, Khan Y, Rehman AU, Ullah N, Khonina SN, Kazanskiy NL, Butt MA. Plasmonic perfect absorber utilizing polyhexamethylene biguanide polymer for carbon dioxide gas sensing application. Materials 2023; 16(7): 2629. DOI: 10.3390/ma16072629.
  • Hayashi S, Nesterenko DV, Sekkat Z. Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing. J Phys D Appl Phys 2015; 48(32): 325303. DOI: 10.1088/0022-3727/48/32/325303.
  • Catchpole KR, Polman A. Plasmonic solar cells. Opt Express 2008; 16(26): 21793-21800. DOI: 10.1364/OE.16.021793.
  • Ohannesian N, Misbah I, Lin SH, Shih W-C. Plasmonic nano-aperture label-free imaging. Nat Commun 2020; 11: 5805. DOI: 10.1038/s41467-020-19678-w.
  • Calafell IA, Cox JD, Radonjić M, Saavedra JRM, de Abajo FJG, Rozema LA, Walther P. Quantum computing with graphene plasmons. NPJ Quantum Inf 2019; 5: 37. DOI: 10.1038/s41534-019-0150-2.
  • Butt MA, Kazanskiy NL, Khonina SN. Metal-insulator-metal waveguide plasmonic sensor system for refractive index sensing applications. Adv Photon Res 2023; 4(7): 2300079. DOI: 10.1002/adpr.202300079.
  • Zia R, Selker MD, Catrysse PB, Brongersma ML. Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A 2004; 21(12): 2442-2446. DOI: 10.1364/JOSAA.21.002442.
  • Kazanskiy NL, Khonina SN, Butt MA. Polarization-insensitive hybrid plasmonic waveguide design for evanescent field absorption gas sensor. Photonic Sensors 2021; 11: 279-290. DOI: 10.1007/s13320-020-0601-6.
  • Butt MA, Kazanskiy NL, Khonina SN. On-chip symmetrically and asymmetrically transformed plasmonic Bragg grating formation loaded with a functional polymer for filtering and CO2 gas sensing applications. Measurement 2022; 201: 111694. DOI: 10.1016/j.measurement.2022.111694.
  • Kazanskiy NL, Khonina SN, Butt MA. Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review. Physica E Low Dimens Syst Nanostruct 2020; 117: 113798. DOI: 10.1016/j.physe.2019.113798.
  • Butt MA, Kazanskiy NL, Khonina SN. Tapered waveguide mode converters for metal-insulator-metal waveguide plasmonic sensors. Measurement 2023; 211: 112601. DOI: 10.1016/j.measurement.2023.112601.
  • Tittl A, Giessen H, Liu N. Plasmonic gas and chemical sensing. Nanophotonics 2014; 3(3): 157-180. DOI: 10.1515/nanoph-2014-0002.
  • Nesterenko DV, Pavelkin R, Hayashi S, Sekkat Z, Soifer V. Fano approximation as a fast and effective way for estimating resonance characteristics of surface plasmon structures. Plasmonics 2021; 16: 1001-1011. DOI: 10.1007/s11468-020-01364-8.
  • Nesterenko DV, Pavelkin RA, Hayashi S. Estimation of resonance characteristics of single-layer surface-plasmon sensors in liquid solutions using Fano’s approximation in the visible and infrared regions. Computer Optics 2019; 43(4): 596-604. DOI: 10.18287/2412-6179-CO-681.
  • Ali MRK, Wu Y, El-Sayed MA. Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application. J Phys Chem C 2019; 123(25): 15375-15393. DOI: 10.1021/acs.jpcc.9b01961.
  • Mehta KB, Chen N. Plasmonic chiral contrast agents for optical coherence tomography: numerical study. Opt Express 2011; 19(16): 14903-14912. DOI: 10.1364/OE.19.014903.
  • Mantri Y, Jokerst JV. Engineering plasmonic nanoparticles for enhanced photoacoustic imaging. ACS Nano 2020; 14(8): 9408-9422. DOI: 10.1021/acsnano.0c05215.
  • Moretti L, Mazzanti A, Rossetti A, et al. Plasmonic control of drug release efficiency in agarose gel loaded with gold nanoparticle assemblies. Nanophotonics 2021; 10(1): 247-257. DOI: 10.1515/nanoph-2020-0418.
  • Kazanskiy NL, Khonina SN, Butt MA, Kazmierczak A, Piramidowicz R. A numerical investigation of a plasmonic sensor based on a metal-insulator-metal waveguide for simultaneous detection of biological analytes and ambient temperature. Nanomaterials 2021; 11(10): 2551. DOI: 10.3390/nano11102551.
  • Sun X, Lei Z, Zhong H, He C, Liu S, Meng Q, Liu Q, Chen S, Kong X, Yang T. A quasi-3D Fano resonance cavity on optical fiber end-facet for high signal-to-noise ratio dip-and-read surface plasmon sensing. Light: Advanced Manufacturing 2022; 3(4): 46. DOI: 10.37188/lam.2022.046.
  • Mola GT, Mthethwa MC, Hamed MSG, Adedeji MA, Mbuyise XG, Kumar A, Sharma G, Zang Y. Local surface plasmon resonance assisted energy harvesting in thin film organic solar cells. J Alloys Compd 2021; 856: 158172. DOI: 10.1016/j.jallcom.2020.158172.
  • Tharwat MM, Almalki A, Mahros AM. Plasmon-enhanced sunlight harvesting in thin-film solar cell by randomly distributed nanoparticle array. Materials 2021; 14(6): 1380. DOI: 10.3390/ma14061380.
  • Prashant DV, Agnihotri SK, Samajdar DP. Enhanced light harvesting in GaAs thin-film solar cells using plasmonic gold (Au) nanoparticle absorbers. Materialstoday: Proc 2022; 58(2): 709-713. DOI: 10.1016/j.matpr.2022.02.251.
  • Manjavacas A, Liu JG, Kulkarni V, Nordlander P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 2014; 8(8): 7630-7638. DOI: 10.1021/nn502445f.
  • Dong J, Gao W, Han Q, Wang Y, Qi J, Yan X, Sun M. Plasmon-enhanced upconversion photoluminescence: Mechanism and application. Results Phys 2019; 4: 100026. DOI: 10.1016/j.revip.2018.100026.
  • Fahad M, Oh H, Jung W, Binns M, Hong S-K. Metal nanoparticles based stack structured plasmonic luminescent solar concentrator. Sol Energy 2017; 155: 934-941. DOI: 10.1016/j.solener.2017.07.037.
  • Enrichi F, Quandt A, Righini GC. Plasmonic enhanced solar cells: Summary of possible strategies and recent results. Renew Sust Energ Rev 2018; 82(3): 2433-2439. DOI: 10.1016/j.rser.2017.08.094.
  • Kim K, Lee S. Detailed balance analysis of plasmonic metamaterial perovskite solar cells. Opt Express 2019; 27(16): A1241-A1260. DOI: 10.1364/OE.27.0A1241.
  • Ghahremanirad E, Olyaee S, Hedayati M. The influence of embedded plasmonic nanostructures on the optical absorption of perovskite solar cells. Photonics 2019; 6(2): 37. DOI: 10.3390/photonics6020037.
  • King ME, Wang C, Guzman MVF, Ross MB. Plasmonics for environmental remediation and pollutant degradation. Chem Catalysis 2022; 2(8): 1880-1892. DOI: 10.1016/j.checat.2022.06.017.
  • Yaghoubi S, Babapoor A, Mousavi SM, Hashemi SA, Gholami A, Lai CW, Chiang W-H. Recent advances in plasmonic chemically modified bioactive membrane applications for the removal of water pollution. Water 2022; 14(22): 3616. DOI: 10.3390/w14223616.
  • He C, Liu L, Korposh S, Correia R, Morgan SP. Volatile organic compound vapour measurements using a localised surface plasmon resonance optical fibre sensor decorated with a metal-organic framework. Sensors 2021; 21(4): 1420. DOI: 10.3390/s21041420.
  • Kunwar S, Pandit S, Kulkarni R, Mandavkar R, Lin S, Li M-Y, Lee J. Hybrid device architecture using plasmonic nanoparticles, graphene quantum dots, and titanium dioxide for UV photodetectors. ACS Appl Mater Interfaces 2021; 13(2): 3408-3418. DOI: 10.1021/acsami.0c19058.
  • Weiss MN, Srivastava R, Groger H, Lo P, Luo S-F. A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors. Sens Actuator A Phys 1996; 51(2-3): 211-217. DOI: 10.1016/0924-4247(95)01208-7.
  • Wei H, Abtahi SMH, Vikesland PJ. Plasmonic colorimetric and SERS sensors for environmental analysis. Environ Sci Nano 2015; 2: 120-135. DOI: 10.1039/C4EN00211C.
  • Bingham JM, Anker JN, Kreno LE, Van Duyne RP. Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc 2010; 132(49): 17358-17359. DOI: 10.1021/ja1074272.
  • Deeb C, Pelouard J-L. Plasmon lasers: coherent nanoscopic light sources. Phys Chem Chem Phys 2017; 19: 29731-29741. DOI: 10.1039/C7CP06780A.
  • Azzam SA, Kildishev AV, Ma R-M, Ning C-Z, Oulton R, Shalaev VM, Stockman MI, Xu J-L, Zhang X. Ten years of spasers and plasmonic nanolasers. Light Sci Appl 2020; 9: 90. DOI: 10.1038/s41377-020-0319-7.
  • Ma R-M, Wang S-Y. Plasmonic nanolasers: fundamental properties and applications. Nanophotonics 2021; 10(14): 3623-3633. DOI: 10.1515/nanoph-2021-0298.
  • Hill MT, et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt Express 2009; 17(13): 11107-11112. DOI: 10.1364/OE.17.011107.
  • Oulton RF, et al. Plasmon lasers at deep subwavelength scale. Nature 2009; 461: 629-632. DOI: 10.1038/nature08364.
  • Noginov MA, et al. Demonstration of a spaser-based nanolaser. Nature 2009; 460: 1110-1112. DOI: 10.1038/nature08318.
  • Oulton RF. Surface plasmon lasers: sources of nanoscopic light. Materialstoday 2012; 15(1-2): 26-34. DOI: 10.1016/S1369-7021(12)70018-4.
  • Butt MA, Khonina SN, Kazanskiy NL. Ultra-short lossless plasmonic power splitter design based on metal–insulator–metal waveguide. Laser Phys 2020; 30(1): 016201. DOI: 10.1088/1555-6611/ab5577.
  • Carvalho WOF, Mejia-Salazar JR. Plasmonics for telecommunications applications. Sensors 2020; 20(9): 2488. DOI: 10.3390/s20092488.
  • Heni W, Hoessbacher C, Haffner C, Fedoryshyn Y, Baeuerle B, Josten A, Hillerkuss D, Salamin Y, Bonjour R, Melikyan A, Kohl M, Elder DL, Dalton LR, Hafner C, Leuthold J. High speed plasmonic modulator array enabling dense optical interconnect solutions. Opt Express 2015; 23(23): 29746-29757. DOI: 10.1364/OE.23.029746.
  • Giannini V, Fernandez-Dominguez AI, Heck SC, Maier SA. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 2011; 111(6): 3888-3912. DOI: 10.1021/cr1002672.
  • Butt MA, Khonina SN, Kazanskiy NL. A plasmonic colour filter and refractive index sensor applications based on metal–insulator–metal square µ-ring cavities. Laser Phys 2020; 30(1): 016205. DOI: 10.1088/1555-6611/ab5578.
  • Butt MA. Numerical investigationof a small footprint plasmonic Bragg grating structure with a high extinction ratio. Photonics Lett Pol 2020; 12(3): 82-84. DOI: 10.4302/plp.v12i3.1042.
  • Wang J, Feng H, Zhang J, Liu C, Zhang Z, Fang D, Wang L, Gao Y. Plasmonic band-stop MIM waveguide filter based on bilateral asymmetric equilateral triangular ring. Optik 2022; 265: 169535. DOI: 10.1016/j.ijleo.2022.169535.
  • Butt MA, Kazanskiy NL, Khonina SN. Label-free detection of ambient refractive index based on plasmonic Bragg gratings embedded resonator cavity sensor. J Mod Opt 2019; 66(19): 1920-1925. DOI: 10.1080/09500340.2019.1683633.
  • Lallas E. Key roles of plasmonics in wireless THz nanocommunications–A survey. Appl Sci 2019; 9(24): 5488. DOI: 10.3390/app9245488.
  • Liang Z, Sun J, Jiang Y, Jiang L, Chen X. Plasmonic enhanced optoelectronic devices. Plasmonics 2014; 9: 859-866. DOI: 10.1007/s11468-014-9682-7.
  • Ghosh RR, Dhawan A. Integrated non-volatile plasmonic switches based on phase-change-materials and their application to plasmonic logic circuits. Sci Rep 2021; 11: 18811. DOI: 10.1038/s41598-021-98418-6.
  • Swift TA, Oliver TAA, Galan MC, Whitney HM. Functional nanomaterials to augment photosynthesis: evidence and considerations for their responsible use in agricultural applications. Interface Focus 2018; 9(1): 20180048. DOI: 10.1098/rsfs.2018.0048.
  • Quintanilla-Villanueva GE, Maldonado J, Luna-Moreno D, Rodriguez-Delgado JM, Villarreal-Chiu JF, Rodriguez-Delgado MM. Progress in plasmonic sensors as monitoring tools for aquaculture quality control. Biosensors 2023; 13(1): 90. DOI: 10.3390/bios13010090.
  • Guha T, Gopal G, Kundu R, Mukherjee A. Nanocomposites for delivery agrochemicals: A comprehensive review. J Agric Food Chem 2020; 68(12): 3691-3702. DOI: 10.1021/acs.jafc.9b06982.
  • Crawford BM, Strobbia P, Wang H-N, Zentella R, Boyanov MI, Pei Z-M, Sun T-P, Kemner KM, Vo-Dinh T. Plasmonic nanoprobes for in vivo multimodal sensing and bioimaging of MicroRNA within plants. ACS Appl Mater Interfaces 2019; 11(8): 7743-7754. DOI: 10.1021/acsami.8b19977.
  • Tang Y, Song S, Gui S, Chao W, Cheng C, Qin R. Active and low-cost hyperspectral imaging for the spectral analysis of a low-light environment. Sensors 2023; 23(3): 1437. DOI: 10.3390/s23031437.
  • Stewart JW, Vella JH, Li W, Fan S, Mikkelsen MH. Ultrafast pyroelectric photodetection with on-chip spectral filters. Nat Mater 2020; 19: 158-162. DOI: 10.1038/s41563-019-0538-6.
  • Plasmonics-based light detector could support precision agriculture. Source: https://www.photonics.com/Articles/Plasmonics-Based_Light_Detector_Could_Support/a65333.
  • Dragoman M, Dragoman D. Plasmonics: Applications to nanoscale terahertz and optical devices. Prog Quantum Electron 2008; 32(1): 1-41. DOI: 10.1016/j.pquantelec.2007.11.001.
  • Schirato A, Crotti G, Silva MG, Teles-Ferreira DC, Manzoni C, Zaccaria RP, Laporta P, de Paula AM, Cerullo G, Valle GD. Ultrafast plasmonics beyond the perturbative regime: breaking the electronic-optical dynamics correspondence. Nano Lett 2022; 22(7): 2748-2754. DOI: 10.1021/acs.nanolett.1c04608.
  • Butt MA, Piramidowicz R. Standard slot waveguide and double hybrid plasmonic waveguide configurationsfor enhanced evanescent field absorption methane gas sensing. Photonics Lett Pol 2022; 14(1): 10-12. DOI: 10.4302/plp.v14i1.1121.
  • Zolotavin P, Alabastri A, Nordlander P, Natelson D. Plasmonic heating in au nanowires at low temperatures: The role of thermal boundary resistance. ACS Nano 2016; 10(7): 6972-6979. DOI: 10.1021/acsnano.6b02911.
  • Horák M, Bukvišová K, Švarc V, Jaskowiec J, Křápek V, Šikola T. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci Rep 2018; 8: 9640. DOI: 10.1038/s41598-018-28037-1.
  • Guo J, Li S, Chen J, Cai J, Gou X, Wang S, Ye J, Liu Y, Lin L. Tunable plasmonic devices by integrating graphene with ferroelectric nanocavity. Adv Mater Interfaces 2022; 9(27): 2200776. DOI: 10.1002/admi.202200776.
  • Ma J, Zeng D, Yang Y, Pan C, Zhang L, Xu H. A review of crosstalk research for plasmonic waveguides. Opto-Electron Adv 2019; 2: 180022. DOI: 10.29026/oea.2019.180022.
  • Cortie MB, Arnold MD, Keast VJ. The quest for zero loss: Unconventional materials for plasmonics. Adv Mater 2020; 32(18): 1904532. DOI: 10.1002/adma.201904532.
Еще
Статья научная