Интегральное уравнение для численного решения стационарных квантово-механических задач
Автор: Князев Сергей Юрьевич
Журнал: Вестник Донского государственного технического университета @vestnik-donstu
Рубрика: Информатика, вычислительная техника и управление
Статья в выпуске: 3 (86) т.16, 2016 года.
Бесплатный доступ
Целью работы является описание метода численного решения стационарного уравнения Шредингера, основанного на использовании интегрального уравнения, тождественного уравнению Шредингера. По своей структуре это интегральное уравнение близко к уравнению Фредгольма второго рода и допускает получение численного решения задачи. Рассматриваемый метод позволяет находить собственные значения энергии и собственные решения для квантово-механических задач различной размерности. Приведены результаты тестирования метода при решении задачи для одномерного и двумерного квантового осциллятора. Найденные численным методом значения собственных энергий и собственных функций осциллятора сравнивались с известными аналитическими решениями, затем оценивалась погрешность результата. Наибольшая точность решения получена для первых энергетических уровней. Погрешность численного решения возрастает с номером собственного значения энергии. Для последующего энергетического уровня погрешность увеличивается почти на порядок. Для четвертого энергетического уровня при разбиении области интегрирования на 500 элементов погрешность решения для собственных функций не превосходит 2%. Если энергетический уровень является вырожденным, то существует возможность получения всех собственных функций, соответствующих данному уровню. Для этого используются различные вспомогательные функции, симметрия которых согласуется с симметрией собственной функции.
Уравнение шредингера, собственные значения, собственные функции, численное решение, фундаментальные решения
Короткий адрес: https://sciup.org/14250232
IDR: 14250232 | DOI: 10.12737/20217
Список литературы Интегральное уравнение для численного решения стационарных квантово-механических задач
- Ландау, Л. Д. Квантовая механика. Нерелятивистская теория/Л. Д. Ландау, Е. М. Лифшиц. -Москва: Гос. изд-во физ.-мат. лит., Наука, 1963. -703 с.
- Kesarwani, R. N. Eigenvalues of an anharmonic oscillators/R. N. Kesarwani, Y. P. Varshni//J. Math. Phys. -1981. -Vol. 22. -№ 9. -P. 1983-1989.
- Ульянов, В. В. Интегральные методы в квантовой механике/В. В. Ульянов. -Харьков: Вища школа. Изд-во при Харьк. ун-те, 1982. -160 с.
- Bender, С. М. Anharmonic oscillator. II. A study of perturbation theory in large order/С. М. Bender, Т. Т. Wu//Phys. Rev. -1973. -Vol. 7. -№ 6. -P. 1620-1636.
- Killingbeck, J. P. Microcomputer Quantum Mechanics/J. P. Killingbeck. -Adam Hiller, 1983. -p. 380.
- Banerjee, К. The anharmonic oscillator/К. Banerjee, S. P. Bhatnagar, V. Choudhry, S. S. Kanwal//Proc. R. Soc. A, 1978. -Vol. 360. -P.575-586.
- Черкасский, В. А. Численное решение уравнения Шредингера: метод диагонализации и спектральный метод/В. А. Черкасский//Вiсник Харкiвського нацiонального унiверситету. -2010. -№ 926. -С. 204-211.
- Dineykhan, M. The Schroedinger equation for bound state systems in the oscillator representation/М. Dineykhan, G. V. Efimov//Repots of Math. Phys. -1995. -V.6. -№ 2/3. -P. 287-308.
- Abrashkevich, A. G. FESSDE, a program for the finite-element solution of the coupled-channel Schroedinger equation using high-order accuracy approximations/A. G. Abrashkevich, D. G. Abrashkevich, M. S. Kaschiev, I. V. Puzynin//Соmр. Phys. Commun. -1995. -Vol. 85 -P. 6574.
- Jafarpour, М. Calculation of energy eigenvalues for the quantum anharmonic oscillator with a polynomial potential/М. Jafarpour, D. Afshar//J. Phys. A: Math. Gen. -2002. -Vol. 35 -P. 87-92.
- Квитко, Г. В. Численное решение уравнения Шрёдингера с полиномиальными потенциалами/Г. В. Квитко, Э. Л. Кузин, Д. В. Шоть//Вестник Балт. муницип. ин-та им. И. Канта. -2011. -Вып. 5. -С.115-119.
- Лукьяненко, А. Н. Символьно-численное решение двумерного уравнения Шрёдингера с двухъямным потенциалом/А. Н. Лукьяненко, Н. А. Чеканов//Университет им. В.И. Вернадского. -2008. -№ 3(13). -Т. 2. -С. 43-50.
- Полянин, А. Д. Справочник по линейным уравнениям математической физики. -Москва: Физматлит, 2001. -576 с.
- Владимиров, B. C. Уравнения математической физики/В. С. Владимиров, В. В. Жаринов. -Москва: Физматлит, 2004. -400 с.
- Fairweather, G. The method of fundamental solutions for problems in potential theory/G. Fairweather, R. L. Johnston//Treatment of Integral Equations by Numerical Methods/eds. C. T. H. Baker, G. F. Miller. -London: Academic Press, 1982. -P. 349-359.
- Князев, С. Ю. Численное решение уравнений Пуассона и Гельмгольца с помощью метода точечных источников/С. Ю. Князев//Изв. вузов. Электромеханика. -2007. -№ 2. -С. 77-78.
- Князев, С. Ю. Численное решение краевых задач для неоднородных уравнений Гельмгольца методом точечных источников поля/С. Ю. Князев, Е. Е. Щербакова, А. Н. Заиченко//Известия высших учебных заведений. Электромеханика. -2014. -№ 4. -С. 14-19.
- Князев, С. Ю. Решение задач тепло-и массопереноса с помощью метода точечных источников поля/С. Ю. Князев, Е. Е. Щербакова//Известия высших учебных заведений. Северо-Кавказский регион. Серия: Технические науки. -2006. -№ 4. -С. 43-47.
- Князев, С. Ю. Моделирование полей упругих деформаций с применением метода точечных источников/С. Ю. Князев, В. Н. Пустовойт, Е. Е. Щербакова//Вестник Дон. гос. техн. ун-та. -2015. -Т. 15. № 1 (80). -С. 29-38.
- Князев, С. Ю. Моделирование трехмерных полей упругих деформаций с помощью метода точечных источников/С. Ю. Князев, В. Н. Пустовойт, Е. Е. Щербакова, А. А. Щербаков//Вестник Дон. гос. техн. ун-та. -2015. -Т. 15. № 4 (83). -С. 13-23.