Integration of deep learning and wireless sensor networks for accurate fire detection in indoor environment
Автор: Dheyab O.A., Chernikov D.Yu., Selivanov A.S.
Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu
Рубрика: Информационно-коммуникационные технологии
Статья в выпуске: 1 т.17, 2024 года.
Бесплатный доступ
Systems for detecting fires are essential for protecting people and property. Still, there are a lot of problems with these systems' accuracy and the frequency of false warnings. This study uses wireless sensor networks with deep learning to improve the accuracy of real-time fire detection systems and decrease false alarms. Wi-Fi camera movies are analyzed using the YOLOv5 deep learning model. This model locates and classifies items quickly and precisely using deep learning techniques. To guarantee accurate detection, a sizable collection of fire-related data is used to train the model. When a fire occurs, users receive early warnings via WebRTC technology, and live footage of the burning location is broadcast. Using these sophisticated technologies, the efficiency of fire detection in the indoor environment can be improved, providing users with immediate and accurate alarms. Personnel and property safety is improved, and losses due to fires in the interior environment are decreased.
Fire detection, yolov5, deep learning, wireless sensor networks
Короткий адрес: https://sciup.org/146282835
IDR: 146282835
Список литературы Integration of deep learning and wireless sensor networks for accurate fire detection in indoor environment
- Barmpoutis P. Papaioannou P., Dimitropoulos K. Grammalidis N. A review on early forest fire detection systems using optical remote sensing, Sensors, 2020, 20, 1-26, doi:10.3390/s20226442.
- Redmon J, Divvala S, Girshick R. et al. You only look once: unified, realtime objectdetecti-on[C], IEEE Conference on Computer Vision and Pattern Recognition, 2016, 779-788.
- Yu N., Chen Y. Video flame detection method based on TwoStream convolutional neural network, Proceedings of the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 24-26 May 2019, 482-486.
- Jain P., Coogan S. C., Subramanian S. G., Crowley M.; Taylor S., Flannigan M. D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478-505, doi:10.1139/er-2020-0019.
- Abdusalomov A.B., Islam B.M. S., Nasimov R., Mukhiddinov M., & Whangbo T.K. (2023). An improved forest fire detection method based on the detectron2 model and a deep learning approach. Sensors, 23(3), 1512.
- Luo W. Research on fire detection based on Yolov5', 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE) [Preprint], 2022, doi: 10.1109/icbaie56435.2022.9985857.
- Li Y., Shang J., Yan M., Ding B., & Zhong J. Real-time early indoor fire detection and localization on embedded platforms with fully convolutional one-stage object detection, Researchgate, 2023, 15(3), 1794, doi: 0.3390/sul5031794
- Abdusalomov A. B., Mukhiddinov M., Kutlimuratov A., & Whangbo T. K. Improved real-time fire warning system based on advanced technologies for visually impaired people, Sensors, 2022, 22(19), 7305, doi: 10.3390/s22197305
- Sun Y., & Feng, J. Fire and smoke precise detection method based on the attention mechanism and anchor-free mechanism, Complex & Intelligent Systems, 2023, 1-14.
- Zhao J., Wei H., Zhao X., Ta N., & Xiao M. Application of improved YOLO v4 model for real time video fire detection, Basic & clinical pharmacology & toxicology, 2021, 128. 47.
- Bharathi V., Vishwaa M., Elangkavi K. and Krishnan V. H. A custom yolov5-based real-time fire detection system: a deep learning approach, Journal of Data Acquisition and Processing, 2023, 38(2), 441, doi: 10.5281/zenodo.7766359.
- Hery, Hery et al. The design of microcontroller based early warning fire detection system for home monitoring, IJNMT (International Journal of New Media Technology), 2022, 9(1), 6-12.
- Logeshwaran M. and J. Joselin Jeya Sheela ME. Designing an IoT based Kitchen Monitoring and Automation System for Gas and Fire Detection, 6th International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2022.
- Wu K. and Lagesse B. Do you see what I see? Detecting hidden streaming cameras through similarity of simultaneous observation, IEEE International Conference on Pervasive Computing and Communications (PerCom) [Preprint]. doi:10.1109/percom.2019.8767411.
- Bakary D., Ouamri A., and Keche M. A Hybrid Approach for WebRTC Video Streaming on Resource-Constrained Devices, Electronics, (2023, 12(18), 3775.
- Russell S. J. et al. Artificial Intelligence: A modern approach. Harlow, United Kingdom: Pearson, 2022.
- Janiesch Christian J., Zschech P., and Heinrich K. Machine learning and deep learning, Electronic Markets, 2021, 31(3), 685-695.
- Sultana F., Sufian A., & Dutta P. A review of object detection models based on convolutional neural network. Intelligent Computing: Image ProcessingBasedApplications, 2020, 1-16.
- Zhao Z. Q., Zheng P., Xu S. T., & Wu X. Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems, 2019, 30(11), 3212-3232.
- Zou X. A Review of Object Detection Techniques, International Conference on Smart Grid and Electrical Automation (ICSGEA), 2019, August, 251-254.
- Laroca R., Severo E., Zanlorensi L.A., Oliveira L. S., Gongalves G.R., Schwartz W.R., & Menotti D. A robust real-time automatic license plate recognition based on the YOLO detector, International Joint Conference on Neural Networks (IJCNN), 2018, July, 1-10.
- Tian Y., Yang G., Wang Z., Wang H., Li E., & Liang Z. Apple detection during different growth stages in orchards using the improved YOLO-V3 model, Computers and electronics in agriculture, 2019, 157, 417-426.
- Jamtsho Y., Riyamongkol P., & Waranusast R. Real-time license plate detection for non-helmeted motorcyclist using YOLO, ICT Express, 2021, 7(1), 104-109.
- Han J., Liao Y., Zhang J., Wang S., & Li S. Target fusion detection of LiDAR and camera based on the improved YOLO algorithm, Mathematics, 2018, 6(10), 213.
- Lin J. P., & Sun M.T. A YOLO-based traffic counting system. Conference on Technologies andApplicationsofArtificiallntelligence (TAAI), 2018, November, 82-85.
- Lu J., Ma C., Li L., Xing X., Zhang Y., Wang Z., & Xu J. A vehicle detection method for aerial image based on YOLO, Journal of Computer and Communications, 2018, 6(11), 98-107.
- Toulouse T., Rossi L., Campana A., Celik T., Akhloufi M. Computervisionfor wildre research: An evolving image dataset for processing and analysis, Fire Safety Journal, 2017, 92, 188-194.