Interpolation based on context modeling for hierarchical compression of multidimensional signals
Автор: Gashnikov Mikhael Valeryevich
Журнал: Компьютерная оптика @computer-optics
Рубрика: Обработка изображений, распознавание образов
Статья в выпуске: 3 т.42, 2018 года.
Бесплатный доступ
Context algorithms for interpolation of multidimensional signals in the compression problem are researched. A hierarchical compression method for arbitrary dimension signals is considered. For this method, an interpolation algorithm based on the context modeling is proposed. The algorithm is based on optimizing parameters of the interpolating function in a local neighborhood of the interpolated sample. At the same time, locally optimal parameters found for more decimated scale signal levels are used to interpolate samples of less decimated scale signal levels. The context interpolation algorithm is implemented programmatically as part of a hierarchical compression method. Computational experiments have shown that using a context interpolator instead of an average interpolator makes it possible to significantly improve the efficiency of hierarchical compression.
Interpolation, compression, multivariate signal, context modeling, image, maximum error
Короткий адрес: https://sciup.org/140228750
IDR: 140228750 | DOI: 10.18287/2412-6179-2018-42-3-468-475