Introduction to chronobiology

Автор: G. Cornelissen, L. Sackett-Lundeen, A. Chase Turner, F. Guillaume, L. A. Beaty

Журнал: Вестник Международной академии наук (Русская секция) @vestnik-rsias

Рубрика: Медико-биологические науки

Статья в выпуске: 1, 2021 года.

Бесплатный доступ

The International Committee on Nomenclature of the International Society for Chronobiology (ISC) in 1977 formally adopted the definition «chronobiology» as «Chronobiology: science objectively quantifying and investigating mechanisms of biologic time structure, including rhythmic manifestations of life». It also adopted the definition of «circadian» as «Circadian: relating to biologic variations or rhythms with a frequency of 1 cycle in 24±4 hours; circa (about, approximately) and dies (day or 24 hours). Note: term describes rhythms with an about 24-hour cycle length, whether they are frequency-synchronized with (acceptable) environmental schedules (24-hour periodic or other) or are desynchronized or free-running from the local environmental time scale, with periods of slightly yet consistently different from 24 hours» [Chronobiologia 1977; 4 (Suppl. 1), 189 pp.]. The beginnings of chronobiology as a discipline in its own right are recounted, with emphasis on the critical role played by Franz Halberg to provide all the needed ingredients for the new science to develop and strive, from gathering a critical mass of data in cooperation with colleagues worldwide to developing inferential statistical methods for their analysis and interpretation. By unveiling lawful variations within the physiological range, Halberg's clear vision that they have far reaching implications for health and disease has been vindicated, now that a molecular mechanism of circadian rhythms has been documented and the role played by the suprachiasmatic nuclei and clock genes in the periphery continues to be better understood. Chronobiology, however, encompasses more than just circadian rhythms. Evidence is presented herein for the endogenicity of the about-weekly (circaseptan) rhythm, documented in uni-cells and early in human life. How they can be used to further optimize treatment timing is illustrated in a few examples, notably in relation to cancer.

Еще

Сhronobiology, circadian rhythms, clock genes, suprachiasmatic nuclei, circaseptan rhythms

Короткий адрес: https://sciup.org/143173966

IDR: 143173966

Список литературы Introduction to chronobiology

  • Aschoff J. Speech after dinner. 1974 Capri Symposium on timing and toxicity. In: Aschoff J., Ceresa F., Halberg F. (Eds.) Chronobiological Aspects of Endocrinology. Chronobiologia 1974; 1 (Suppl. 1): 483–495.
  • Bretzl H. Botanische Forschungen des Alexanderzuges. Leipzig: B.G. Teubner; 1903: 120–132.
  • Theophrastus (Hort A. trans.). Enquiry into plants, and minor works on odours and weather signs. Cambridge, Mass.: Harvard University Press / London: W. Heinemann; 1980.
  • Hildebrandt G., Bandt-Reges I. Chronobiologie in der Naturheilkunde: Grundlagen der Circaseptanperiodik. Heidelberg: Haug; 1992; 102 pp.
  • Sutcliffe J., Duin N. A History of Medicine. New York: Barnes & Noble; 1992; 256 pp.
  • Santorio S. De Statica Medicina. Hagae-Comitis, ex typographia A. Vlaco, 1657.
  • Sydenham T. (Swan J, trans). The Entire Works of Dr. Thomas Sydenham, Newly made English from the Originals: Wherein the History of acute and chronic Diseases, and the safest and most effectual Methods of treating them, are faithfully, clearly, and accurately delivered. London: Edward Cave, St. John's Gate, 1742. The Life of Dr. Sydenham, pp. v-xi.
  • Virey J.J. Ephémérides de la vie humaine ou recherches sur la révolution journalière et la périodicité de ses phénomènes dans la santé et les maladies. Thesis, University of Paris, 1814, 39 pp.
  • de Mairan J.J.D. Observation botanique. Histoire de l'Acad?mie Royale des Sciences, 1729, pp. 35–36.
  • Halberg F. Physiologic 24-hour periodicity; general and procedural considerations with reference to the adrenal cycle. Z Vitamin-, Hormon- u Fermentforsch 1959; 10: 225–296.
  • Cambrosio A., Keating P. The disciplinary stake: the case of chronobiology. Social Studies of Science 1983; 13: 323–353.
  • Cambrosio A., Keating P. L'étude des rythmes biologiques: notes socio-historiques. Bulletin du GERB 1988; 21: 9–20.
  • Bünning E. Die endogene tagesrhythmik als grundlage der photoperiodischen reaktion. Ber Dtsch Bot Ges 1936; 54: 590.
  • Cold Spring Harbor Symp Quant Biol 1960; 25, 524 pp.
  • Halberg F., Visscher M.B. Regular diurnal physiological variation in eosinophil levels in five stocks of mice. Proc Soc Exp Biol Med 1950; 75: 846–847.
  • Halberg F., Tong Y.L., Johnson E.A. Circadian system phase — an aspect of temporal morphology; procedures and illustrative examples. Proc. International Congress of Anatomists. In: Mayersbach H v. (Ed.) The Cellular Aspects of Biorhythms. Symposium on Rhythmic Research, Sponsored by the VIII International Congress of Anatomy, Wiesbaden, 8–14. August 1965. New York: Springer-Verlag; 1967. pp. 20–48.
  • Pauly J.E., Scheving L.E. Dedication. Progress in Clinical and Biological Research 1987; 227: xxiii–xxvii.
  • Halberg F., Cornelissen G., Katinas G., Syutkina E.V., Sothern R.B., Zaslavskaya R., Halberg F., Watanabe Y., Schwartzkopff O., Otsuka K., Tarquini R., Perfetto F., Siegelova J. Transdisciplinary unifying implications of circadian findings in the 1950s. J Circadian Rhythms 2003; 1: 2. 61 pp.
  • Halberg F., Cornelissen G., Katinas G.S., Hillman D., Otsuka K., Watanabe Y., Wu J., Halberg Fr., Halberg J., Sampson M., Schwartzkopff O., Halberg E. Many rhythms are control information for whatever we do: an autobiography. Folia anthropologica 2012; 12: 5–134.
  • Cornelissen G. When you eat matters: 60 years of Franz Halberg's nutrition chronomics. The Open Nutraceuticals Journal 2012; 5 (Suppl 1-M1): 16.
  • Cornelissen G. Franz Halberg: A maverick ahead of his time. Herald of the International Academy of Sciences. Russian Section 2018; 1: 78–84.
  • Halberg F., Visscher M.B. A difference between the effects of dietary calorie restriction on the estrous cycle and on the 24-hour adrenal cortical cycle in rodents. Endocrinology 1952; 51: 329–335.
  • Halberg F. Some physiological and clinical aspects of 24-hour periodicity. Lancet (Minneapolis) 1953; 73: 20–32.
  • Best W.R., Muehrcke R.C., Kark R.M. Studies on adrenocortical eosinopenia: a clinical and statistical evaluation of four-hour eosinophil response test. J Clin Invest 1952; 31 (7): 733–742.
  • Halberg F., Ahlgren A. Prologue: puzzles regarding biologic rhythms and their implications for self-help in health care. Scheving LE, Halberg F (Eds). Chronobiology: Principles and Applications to Shifts in Schedules. Alphen aan den Rijn, The Netherlands: Sijthoff and Noordhoff, 1980: v–xxiii.
  • Halberg F., Stephens A.N. Susceptibility to ouabain and physiologic circadian periodicity. Proc Minn Acad Sci 1959; 27: 139–143.
  • Weaver D.R. The suprachiasmatic nucleus: a 25-year retrospective. Journal of Biological Rhythms 1998; 13 (2): 100–112.
  • Moore R.Y, Heller A., Wurtman R.J., Axelrod J. Visual pathway mediating pineal response to environmental light. Science 1967; 155: 220–223.
  • Moore R.Y., Heller A., Bhatnagar R.K., Wurtman R.J., Axelrod J. Central control of the pineal gland: Visual pathways. Arch Neurol 1969; 18: 208–218.
  • Axelrod J., Snyder S.H., Heller A., Moore R.Y. Light-induced changes in pineal hydroxyindole-O-methyltransferase: Abolition by lateral hypothalamic lesions. Science 1966; 154: 898–899.
  • Wurtman R.J., Axelrod J., Chu E.W., Heller A., Moore R.Y. Medial forebrain bundle lesions: Blockade of effects of light on rat gonads and pineal. Endocrinology 1967; 81: 509–514.
  • Wurtman R.J., Axelrod J., Sedvall G., Moore R.Y. Photic and neural control of the 24-hour norepinephrine rhythm in the rat pineal gland. J Pharmacol Exp Ther 1967; 157: 487–492.
  • Moore R.Y., Karapas F., Lenn N.J. A retinohypothalamic projection in the rat. Anat Rec 1971; 169: 382.
  • Moore R.Y., Lenn N.J. A retinohypothalamic projection in the rat. J Comp Neurol 1972; 146: 1–14.
  • Stephan F.K., Zucker I. Rat drinking rhythms: Central visual pathways and endocrine factors mediating responsiveness to environmental illumination. Physiol Behav 1972; 8: 315–326.
  • Moore R.Y., Eichler V.B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 1972; 42: 201–206.
  • Stephan F.K., Zucker I. Circadian rhythms in drinking and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 1972; 69: 1583–1586.
  • Rusak B. The role of the suprachiasmatic nuclei in the generation of circadian rhythms in the golden hamster, Mesocricetus auratus. J Comp Physiol 1977; 118: 145–164.
  • Halberg F., Lubanovic W.A., Sothern R.B., Brockway B., Powell E.W., Pasley J.N., Scheving L.E. Nomifensine chronopharmacology, schedule shifts and circadian temperature rhythms in diuprachiasmatically lesioned rats — modeling emotional chronopathology and chronotherapy. Chronobiologia 1979; 6: 405–424.
  • Powell E.W., Halberg F., Pasley J.N., Lubanovic W., Ernsberger P., Scheving L.E. Suprachiasmatic nucleus and circadian core temperature rhythm in the rat. Journal of Thermal Biology 1980; 5: 189–196.
  • Powell E.W., Pasley J.N., Scheving L.E., Halberg F. Amplitude-reduction and acrophase-advance of circadian mitotic rhythm in corneal epithelium of mice with bilaterally lesioned suprachiasmatic nuclei. The Anatomical Record 1980; 197: 277–281.
  • Scheving L.E., Tsai T.S., Powell E.W., Pasley J.N., Halberg F., Dunn J. Bilateral lesions of suprachiasmatic nuclei affect circadian rhythms in [3H]-thymidine incorporation into deoxyribonucleic acid in mouse intestinal tract, mitotic index of corneal epithelium, and serum corticosterone. Anat Rec 1983; 205: 239–249.
  • Pasley J.N., Powell E.W., Halberg F. Strain differences in circadian drinking behaviors of ethanol and water in rats. Progress in Clinical & Biological Research 1987; 227B: 467–471.
  • Stoynev A.G., Penev P.D., Ikonomov O.C., Halberg F. Suprachiasmatic nuclei lesions eliminate the group circadian rhythm of systolic blood pressure but not of heart rate in rats. Acta Physiologica et Pharmacologica Bulgarica 1996; 22: 1–6.
  • Inouye S.T., Kawamura H. Persistence of circadian rhythmicity in a mammalian hypothalamic "island" containing the suprachiasmatic nucleus. Proc Natl Acad Sci USA 1979; 76: 5962–5966.
  • Shibata S., Oomura Y., Kita H., Hattori K. Circadian rhythmic changes in neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res 1982; 247: 154–158.
  • Sawaki Y., Nihonmatsu I., Kawamura H. Transplantation of the neonatal suprachiasmatic nuclei into rats with complete bilateral suprachiasmatic lesions. Neurosci Res 1984; 1: 67–72.
  • Silver R., Lehman M.N., Gibson M., Gladstone W.R., Bittman E.L. Dispersed cell suspensions of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamsters. Brain Res 1990; 525: 45–58.
  • Welsh D.K., Logothetis D.E., Meister M., Reppert S.M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 1995; 14: 697–706.
  • Mieda M. The central circadian clock of the suprachiasmatic nucleus as an ensemble of multiple oscillatory neurons. Neuroscience Research 2020; 156: 24-31.
  • Ono D., Honma K.I., Honma S. GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm. Journal of Neurochemistry 2021; 157 (1): 31–41.
  • Mieda M. The network mechanism of the central circadian pacemaker of the SCN: Do AVP neurons play a more critical role than expected? Frontiers in Neuroscience 2019; 13: 139 (7 pages).
  • Tomita J., Nakajima M., Kondo T., Iwasaki H. No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 2005; 307: 251–254.
  • Yang Y., Jiang Z., Cheng S., Wang Y., Liu Y., Xiao J., Guo H., Li S., Hou W., Wang Z. Nicotinamide adenine dinucleotide: a possible circadian zeitgeber functioning in nontranscription oscillation. Biol Rhythm Res 2013; 45: 429–440.
  • Mattson M.P., Allison D.B., Fontana L., Harvie M., Longo V.D., Malaisse W.J., Mosley M., Notterpek L., Ravussin E., Scheer F.A., Seyfried T.N., Varady K.A., Panda S. Meal frequency and timing in health and disease. Proc Natl Acad Sci USA 2014; 111: 16647–16653.
  • Mazzoccoli G., Pazienza V., Vinciguerra M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiol Int 2012; 29: 227–251.
  • Shinoda H., Ohtsuka Isoya M., Cornelissen G., Halberg F. Putative circaseptans or other infradians in murine dentin accretion and the suprachiasmatic nuclei. Neuroendocrinol Lett 2003; 24 (Suppl 1): 208–211.
  • Cornelissen G., Halberg F. Introduction to Chronobiology. Medtronic Chronobiology Seminar #7, April 1994, 52 pp. (Library of Congress Catalog Card #94-060580).
  • Refinetti R., Cornelissen G., Halberg F. Unilateral SCN ablation amplifies while bilateral SCN ablation dampens the circadian rhythm in core temperature of hamsters. Proceedings, International Conference on the Frontiers of Biomedical Science: Chronobiology, Chengdu, China, September 24–26, 2006; pp. 196-198.
  • Konopka R.J., Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 1971; 68 (9): 2112–2116.
  • Ralph M.R., Menaker M. A mutation of the circadian system in golden hamsters. Science 1988; 241 (4870): 1225–1227.
  • Shearman L.P., Sriram S., Weaver D.R., Maywood E.S., Chaves I., Zheng B., Kume K., Lee C.C., van der Horst G.T., Hastings M.H., Reppert S.M. Interacting molecular loops in the mammalian circadian clock. Science 2000; 288 (5468): 1013–1019.
  • Toh K.L., Jones C.R., He Y., Eide E.J., Hinz W.A., Virshup D.M., Ptacek L.J. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001; 291: 1040–1043.
  • Takahashi J.S., Shimomura K., Kumar V. Searching for genes underlying behavior: lessons from circadian rhythms. Science 2008; 322: 909–912.
  • Hastings M.H., O'Neill J.S. Cytosolic and transcriptional cycles underlying circadian oscillations. In: Colwell C.S. (Ed). Circadian Medicine. Wiley Blackwell 2015; 390 pp.
  • Preitner N., Damiola F., Lopez-Molina L., Zakany J., Duboule D., Albrecht U., Schibler U. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002; 110: 251–260.
  • Cho H., Zhao X., Hatori M., Yu R.T., Barish G.D., Lam M.T., Chong L.W., DiTacchio L., Atkins A.R., Glass C.K., Liddle C., Auwerx J., Downes M., Panda S., Evans R.M. Regulation of circadian behavior and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature 2012; 485: 123-127.
  • Ueda H.R., Hayashi S., Chen W., Sano M., Machida M., Shigeyoshi Y, Iino M, Hashimoto S. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 2005; 37: 187–192.
  • Rollag M.D., Berson D.M., Provencio I. Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms 2003; 18: 227–234.
  • Maywood E.S., Mrosovsky N. A molecular explanation of interactions between photic and non-photic circadian clock-esetting stimuli. Brain Res Gene Expr Patterns 2001; 1 (1): 27–31.
  • Menet J.S., Rodriguez J., Abruzzi K.C., Rosbash M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 2012; 1: e00011.
  • Hastings M.H., Maywood E.S., O'Neill J.S. Cellular circadian pacemaking and the role of cytosolic rhythms. Curr Biol 2008; 18: R805–R815.
  • Barnum C.P., Jardetzky C.D., Halberg F. Nucleic acid synthesis in regenerating liver. Tex Rep Biol Med 1957; 15: 134–147.
  • Radha E., Hill T.D., Rao G.H., White J.G. Glutathione levels in human platelets display a circadian rhythm in vitro. Thromb Res 1985; 40: 823–831.
  • Rutter J., Reick M., Wu L.C., McKnight S.L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001; 293: 510–514.
  • Asher G., Schibler U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 2011; 13: 125–137.
  • Maywood E.S., Chesham J.E., O'Brien J.A., Hastings M.H. A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci USA 2011; 108: 14306–14311.
  • Paulose J.K., Rucker E.B., 3rd, Cassone V.M. Toward the beginning of time: circadian rhythms in metabolism precede rhythms in clock gene expression in mouse embryonic stem cells. PLoS One 2012; 7: e49555.
  • O'Neill J.S., Reddy A.B. Circadian clocks in human red blood cells. Nature 2011; 469: 498–503.
Еще
Статья научная