Introduction to Neutrosophic Topological Spatial Region, Possible Application to GIS Topological Rules

Автор: A. A. Salama, Said Broumi, S. A. Alblowi

Журнал: International Journal of Information Engineering and Electronic Business(IJIEEB) @ijieeb

Статья в выпуске: 6 vol.6, 2014 года.

Бесплатный доступ

Neutrosophic set is a power general formal framework, which generalizes the concept of the classic set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set, and interval intuitionistic fuzzy set from philosophical point of view. In Geographical Information Systems (GIS) there is a need to model spatial regions with indeterminate boundary and under indeterminacy. In this paper, we first gives fundamental concepts and properties of a neutrosophic spatial region.

Neutrosophic Sets, Neutrosophic Topology, Geographical Information Systems, Neutrosophic Spatial Region

Короткий адрес: https://sciup.org/15013310

IDR: 15013310

Список литературы Introduction to Neutrosophic Topological Spatial Region, Possible Application to GIS Topological Rules

  • K. Atanassov, intuitionistic fuzzy sets, in V.Sgurev, ed., Vii ITKRS Session, Sofia (June 1983 central Sci. and Techn. Library, Bulg. Academy of Sciences (1984).
  • K. Atanassov, intuitionistic fuzzy sets, Fuzzy Sets and Systems 20, ,(1986),pp.87-96.
  • K. Atanassov, Review and new result on intuitionistic fuzzy sets, preprint IM-MFAIS-1-88, Sofia, (1988).
  • S. A. Alblowi, A.A. Salama and Mohmed Eisa, New Concepts of Neutrosophic Sets, International Journal of Mathematics and Computer Applications Research (IJMCAR),Vol. 4, Issue 1, (2014) ,pp.59-66.
  • I.M. Hanafy, A.A. Salama and K. Mahfouz, Correlation of Neutrosophic Data, International Refereed Journal of Engineering and Science (IRJES) , Vol.(1), Issue 2 .(2012), pp.39-33.
  • J. F.Allen, "Maintaining Knowledge about Temporal Intervals." Communications of the ACM 26(11) ,(1983) ,pp.832-843.
  • P. A. Burrough,. and A. U. Frank, Eds.. Geographic Objects wit Indeterminate Boundaries. GISDATA Series. London, Taylor & Francis,(1996).
  • T.Cheng, A Process-Oriented Data Model for Fuzzy Spatial Objects. Wageningen, Agricultural University,(1999).
  • E. Clementini, E. and P. Di. Felice. An Algebraic Model for Spatial Objects with Indeterminate Boundaries. Geographic Objects with Indeterminate ,(1996).
  • Boundaries European Science Foundation. A. U. Frank, Taylor & Francis. 2: pp.155- 169.
  • E. Clementini, E. and P. Di Felice. "Approximate topological relations."International Journal of Approximate Reasoning 16,(1997), pp.173-204.
  • A. G. Cohn, B. Bennet, et al. "RCC: a calculus for Region based Qualitative Spatial Reasoning." Geoinformatica 1,(1997), pp.275-316.
  • A. G. Cohn, and N. M. Gotts. The 'egg-yolk' Representation of Regions with Indeterminate Boundaries. Geographic Objects with Indeterminate Boundaries. A. U. Frank. London, Taylor & Francis. GISDATA II, (1996), pp.171-187.
  • D. Coker, "A note on intuitionistic sets and intuitionistic points." TU .J. Math. 20(3),(1996) ,pp.343-351
  • D. Coker,. "An introduction to intuitionistic fuzzy topological space." Fuzzy sets and Systems 88: (1997),pp. 81-89.
  • M. J. Egenhofer, A Formal Definition of Binary Topological Relationships.Third International Conference on Foundations of Data Organization and Algorithms (FODO), Paris, France, June 1989, Springer- Verlag, Berlin Heidelberg, Germany (FRG).
  • M. J. Egenhofer. and R. D. Franzosa ,"Point-set topological spatial relations." International Journal of Geographical Information Systems 5(2) ,(1996), pp.161-174.
  • M. J. Egenhofer. and J. R. Herring. Categorizing Binary opological Relationships Between Regions, Lines, and Points in Geographic Databases., Department of Surveying Engineering, University of Maine, (1991).
  • ME.Orono, P.Fisher. Boolean and fuzzy region. Geographic Objects with Indeterminate Boundaries. A. Frank, Taylor & Francis:,(1996), pp.87-94.
  • A. Gopnik,. and A. N. Meltzoff. Words, Thoughts, and Theories.Cambridge, Mass., The MIT Press,(1997).
  • M.N. Gotts, J. M. Gooday, et al.. "A connection based approach to common-sense topological description and reasoning." The Monist 79(1), (1995).
  • M. Kokla,. and M. Kavouras. "Fusion of Top-level and Geographic Domain Omtologies based on Context Formation and Complementarity. "International Journal of Geographical Information Science 15(7),(2001), pp.679-687.
  • F. Lehmann, and A. G. Cohn. The EGG/YOLK reliability data integration using sorts with prototypes. Infornmation Knowledge Management, ACM Press, (1994).
  • M. Molenaar, An Introduction to the Theory of Spatial Object Modelling for GIS. London, Taylor & Francis,(1998).
  • D.A.Randell. Z. Cui, et al. A spatial logic based on regions and conection. Third International Conference on the Principles of Knowledge Representation and Reasoning, Los Altos, CA: Morgan-Kaufmann,(1992).
  • A.J.Roy.,A Comparison of Rough Sets, Fuzzy sets and Nonmonotonic Logic. Staffordshre, University of Keele,(1999).
  • M. Schneider. Uncertainty Management for Spatial Data in Databases:Fuzzy Spatial Data Types. 6th Int. Symp. on Advances in Spatial, (1999).
  • M.Schneider, "Finite Resolution Crisp and Fuzzy Spatial Objects". Int. Symp. on Spatial Data Handling, Databases, Springer-Verlag. (2000).
  • M. Schneider, "A Design of Topological Predicates for Complex Crisp and Fuzzy Regions". Int. Conf. on Conceptual Modeling, (2001).
  • M.Schneider, "Fuzzy Topological Predicates, Their Properties, and Their Integration into Query Languages". 9th ACM Symp. on Geographic Information Systems, (2001).
  • J. G. Stell, and M. F. Worboys (1997). The Algebraic Structure of Sets of Regions. Spatial Information Theory (COSIT '97), Laurel Highlands, PA, Springer.
  • X.Tang, and W. Kainz. "Analysis of Topological relations between Fuzzy Regions in a General Fuzzy Topological space". Symposium on Geospatial Theory, Processing and Applications, Ottawa,(2002).
  • M. S .White, "A Survey of the Mathematics of Maps". Auto Carto IV,(1979).
  • F. B. Zhan, "Approximate analysis of binary topological relations between geographic regions with indeterminate boundaries" Soft Computing 2,(1998), pp.28-34.
  • I.M. Hanafy, A.A. Salama and K.M. Mahfouz,," Neutrosophic Classical Events and Its Probability" International Journal of Mathematics and Computer Applications Research(IJMCAR) Vol.(3),Issue 1,Mar (2013), pp.171-178.
  • A. A. Salama and S.A. Alblowi, "Generalized Neutrosophic Set and Generalized Neutrosophic Spaces,"Journal Computer Sci. Engineering, Vol. (2) No. (7) (2012),pp.129-132 .
  • A. A. Salama and S. A. Alblowi, "Neutrosophic Set and Neutrosophic Topological Spaces", ISOR J. Mathematics, Vol.(3), Issue(3), (2012) pp-31-35.
  • A. A. Salama, "Neutrosophic Crisp Point & Neutrosophic Crisp Ideals", Neutrosophic Sets and Systems, Vol.1, No. 1, (2013) pp. 50-54.
  • A. A. Salama and F. Smarandache, "Filters via Neutrosophic Crisp Sets", Neutrosophic Sets and Systems, Vol.1, No. 1, (2013) pp. 34-38.
  • A. A. Salama and S.A. Alblowi, "Intuitionistic Fuzzy Ideals Spaces", Advances in Fuzzy Mathematics , Vol.(7), Number 1, (2012) pp. 51- 60.
  • A.A. Salama, and H.Elagamy, "Neutrosophic Filters" International Journal of Computer Science Engineering and Information Technology Reseearch (IJCSEITR), Vol.3, Issue (1), Mar 2013,(2013) , pp. 307-312.
  • A. A. Salama, F.Smarandache and Valeri Kroumov "Neutrosophic crisp Sets & Neutrosophic crisp Topological Spaces, Neutrosophic Sets and Systems, Vol.(2),(2014), pp.25-30.
  • A. A. Salama, Mohamed Eisa and M. M . Abdelmoghny,"Neutrosophic Relations Database" International Journal of Information Science and Intelligent System, 3(1), (2014).
  • A. A. Salama , F. Smarandache and S. A. ALblowi, "New Neutrosophic Crisp Topological Concepts", Neutrosophic Sets and Systems, Accsepted, (2014) .
  • F. Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy , Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA,(2002).
  • F. Smarandache, "A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic crisp Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, (1999).
  • F. Smarandache, "Neutrosophic set, a generialization of the intuituionistics fuzzy sets", Inter. J. Pure Appl. Math., 24 (2005), 287 – 297.
  • D. Sarker, "Fuzzy ideal theory, Fuzzy local function and generated fuzzy topology", Fuzzy Sets and Systems 87, (1997) ,pp.117 – 123..
  • L.A. Zadeh, "Fuzzy Sets", Inform and Control 8, 338-353.(1965).
  • A. Salama, S. Broumi and F. Smarandache, Neutrosophic Crisp Open Set and Neutrosophic Crisp Continuity via Neutrosophic Crisp Ideals, IJ. Information Engineering and Electronic Business, Vol.6, No.3,(2014) 1-8.
Еще
Статья научная