Investigation of brain creatine levels under the mental stress conditions
Автор: Burjanadze George, Dachanidze Natalia, Kuchukashvili Zurab, Chachua Matrona, Menabde Ketevan, Koshoridze Nana
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 4 т.12, 2016 года.
Бесплатный доступ
Alterations in brain creatine levels are considered to be associated with various pathological conditions. However, there is still no exact evidence on character of this changes and clear link between disorders and upstream and downstream direction of creatine changes. Chronic mental stress conditions are thought to be connected with upstream regulation of cellular oxidative pathways, thus oxidizing various structural and active compounds. Oxidative stress also takes part in increase of permeability of blood brain barrier (BBB) that, in turn, makes it possible for a number of molecules to cross the BBB in both directions. Observations on long-term social isolation and circadian rhythm violation show a rising trend in brain creatine amount, while there was remarkable down-regulation in creatine synthesizing system, as the key-enzymes’ (AGAT and GAMT) activity was decreased. Investigations of BBB permeability for creatine under the stress conditions by mass-spectrometric analyses revealed no changes in creatine transport in the stress group, compared to the control. However, the activity of mitochondrial CK was reduced for about 25% and Vmax had fallen down in the stressed group, the Km was not drastically changed. To sum up, it could be supposed that the reason for the elevations of creatine levels in brain under the mental stress conditions could be stimulated by the activated oxidative stress that induces conformational changes in mitochondrial Creatine Kinase structure and decreasing the ability of enzyme to phosphorylate the creatine and as a result free creatine levels in brain are being arisen.
Mental stress, creatine, creatine kinase, l-arginine:glycine amidinotransferase, guanidinoacetate methyltransferase
Короткий адрес: https://sciup.org/14323945
IDR: 14323945
Список литературы Investigation of brain creatine levels under the mental stress conditions
- Aksenov M., Aksenova M., Butterfield D., Markesbery W. (2000) Oxidative Modification of Creatine Kinase BB in Alzheimer’s disease Brain. J Neurochem., 74: 2520-2527
- Allen P. (2012) Creatine metabolism and psychiatric disorders: Does creatine supp-lementation have therapeutic value. Neuroscience and Biobehavioral Reviews, 36: 1442-1462
- Almeida L., Salomons G., Hogenboom F., Jakobs C., Schoffelmeer A. (2006) Exocytotic release of creatine in rat brain. Synapse, 60: 118-123
- Almeida L.S., Rosenberg E., Verhoeven N., Jakobs C., Salomons G. (2006) Are cerebral creatine deficiency syndromes on the radar screen? Future Neurology, 1: 637-649
- Andres R., Ducray A., Schlattner U., Wallimann T., Widmer H. (2008) Functions and effects of creatine in the central nervous system. Brain Research Bulletin, 76: 329-343
- Barnham K.J., Colin L.M., Bush A.I. (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov., 3: 205-214
- Beal M. (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci., 23: 298-304
- Beard E., Braissant O. (2010) Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem., 115: 297-313
- Bodamer O.A., Bloesch Sh.M., Gregg A.R., Stockler-Ipsiroglu S., O’Brien W.E. (2001) Analysis of guanidinoacetate and creatine by isotope dilution electrospray tandem mass spectrometry. Clinica Chimica Acta, 308: 173-178
- Bothwell J., Rae C., Dixon R., Styles P., Bhakoo K. (2001) Hypo-osmotic swelling-activated release of organic osmolytes in brain slices: implications for brain oedema in vivo. Journal Neurochemistry, 77: 1632-1640
- Brosnan J.T., Brosnan M.E. (2007) Creatine: endogenous metabolite,dietary, and therapeutic supplement. Annual Review of Nutrition, 27: 241-261
- Burjanadze G.M., Kuchukashvili Z.T., Chachua M.V., Menabde K.O., Dachanidze N.T., Koshoridze N.I. (2014) Changes in activity of hippocampus creatine kinase under circadian rhythm disorders. Biol. Rhythm Res., 45: 685-697
- Bürklen T.S., Schlattner U., Homayouni R., Gough K., Rak M., Szeghalmi A., Wallimann Th. (2006) The Creatine Kinase/Creatine Connection to Alzheimer's Disease: CK Inactivation, APP-CK Complexes, and Focal Creatine Deposits. J Biomed Biotechnol., 2006: 35936
- Cagnon L., Braissant O. (2007) Hyperammonemia-induced toxicity for the developing central nervous system. Brain Res Rev., 56: 183-197
- Chaturvedi R.K., Beal M.F. (2008) Mitochondrial approaches for neuroprotection. Ann N-Y Acad Sci., 1147: 395-412
- Dachanidze N.T., Kuchukashvili Z.T., Menabde K.O. & Koshoridze N.I. (2015) Circadian rhythm disorders and dynamic changes of energy metabolism in rat heart muscle cells. Biol. Rhythm Res., 46(1): 39-51
- Da Silva R.P., Clow K., Brosnan J.T., Brosnan M.E. (2014) Synthesis of guanidinoacetate and creatine from amino acids by rat pancreas. Br J Nutr., 111: 571-577
- Donnan G.A., Fisher M., Macleod M., Davis S.M. (2008) Stroke. Lancet, 371: 1612-1623
- Duman R.S., Monteggia L.M. (2006) A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59: 1116-1127
- Galbraith R.A., Furukawa M., Li M. (2006) Possible role of creatine concentrations in the brain in regulating appetite and weight. Brain Research, 1101: 85-91
- Johansen, G. & Lumry, R. (1961) Statistical analysis of enzymic steady-state rate data. C. R. Trav. Lab. Carlsberg, 32, 185-214
- Koshoridze N.I., Menabde K.O., Kuchukashvili Z.T., Chachua M.V. (2010) Quantitative alterations in the products of lipid peroxidation under stress. Journal of stress physiology & biochemistry, 6: 4-9
- Kuchukashvili Z., Menabde K., Chachua M., Burjanadze G., Chipashvili M., Koshoridze N. (2011) Functional state of rat cardiomyocytes and blood antioxidant system under psycho-emotional stress. Acta Bioch Bioph Sin., 43: 480-486
- Kuchukashvili Z., Burjanadze G., Menabde K., Chachua M., Dachanidze N., Mikadze M., Koshoridze N. (2012) Long-lasting stress, quantitative changes in nitric oxide concentration and functional state of brain mitochondria. Acta Neurobiol Exp., 72: 40-50
- Loo G., Goodman P.J., Hill K.A., Smith J.T. (1986).Creatine metabolism in the pyridoxine-deficient rat. J Nutr., 116: 2403-2408
- Menabde K.O., Burdzhanadze G.M., Chachua M.V., Kuchukashvili Z.T., Koshoridze N.I. (2011) Tissue specificity of lipid peroxidation under emotional stress in rats. Ukr Biokhim Zh., 83: 85-90
- Nozadze E., Chkadua G., Kometiani Z. (2005) Bivalent cation-activated ATPases. J Neurosci., 4: 49-53
- Ogawa H., Ishiguro Y., Fujioka M. (1983) Guanidoacetate methyltransferase from rat liver: purification, properties, and evidence for the involvement of sulfhydryl groups for activity. Arch Biochem Biophys., 226: 265-275
- Perasso L., Cupello A., Lunardi G.L., Principato C., Gandolfo C., Balestrino M. (2003) Kinetics of creatine in blood and brain after intraperitoneal injection in the rat. Brain Res., 974: 37-42
- Pittenger C., Duman R.S. (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacol., 33: 88-109
- Sheng J.Z., Ella S., Davis M.J., Hill M.A., Braun A.P. (2009) Openers of SKCa and IKCa channels enhance agonist-evoked endothelial nitric oxide synthesis and arterial vasodilation. FASEB J., 23: 1138-1145
- Skowrońska M., Albrecht J. (2013) Oxidative and nitrosative stress in ammonia neurotoxicity. Neurochem Int., 62: 731-737
- Szasz G., Gruber W., Bernt E. (1976) Creatine kinase in serum: Determination of optimum reaction conditions. Clinical Chemistry, 22: 650-656
- Tachikawa M., Fukaya M., Terasaki T., Ohtsuki S., Watanabe M. (2004) Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci., 20: 144-160
- Wallimann T., Dolder M., Schlattner U., Eder M., Hornemann T., O’Gorman E., Ruck A., Brdiczka D. (1998) Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors, 8: 229-234
- Wyss M., Kaddurah-Daouk R. (2000) Creatine and creatinine metabolism. Physiol Rev., 80: 1107-1213
- Yang Jiang, Chengjun Sun, Xueqin Ding, Ding Yuan, Kefei Chen, Bo Gao, Yi Chen, Aimin Sun (2012) Simultaneous determination of adenine nucleotides, creatine phosphate and creatine in rat liver by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry. J Pharmaceut Biomed., 66: 258-263