Использование генетического потенциала многолетних дикорастущих злаков в селекционном улучшении пшеницы

Автор: Крупин П.Ю., Дивашук М.Г., Карлов Г.И.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 3 т.54, 2019 года.

Бесплатный доступ

Большой проблемой в современной селекции пшеницы является снижение генетического разнообразия пшеницы, что связано, в первую очередь, с ограниченным числом сортов, используемых в родословных. Как следствие обеднения генетического пула пшеницы происходит преодоление ее устойчивости фитопатогенами, что в целом снижает стабильность агрофитоценоза. Одним из способов расширения генетического разнообразия пшеницы служит перенос в ее геном генов хозяйственно-ценных признаков от близкородственных родов и видов, объединенных в три генетических пула: первичный (сорта твердой и мягкой пшеницы), вторичный (различные виды Triticum и Aegilops ), третичный (наиболее удаленные виды Triticeae). В настоящем обзоре представлены успехи в области переноса генов хозяйственно ценных признаков в геном пшеницы от её дикорастущих многолетних сородичей, относящихся к третичному генетическому пулу: Thino-pyrum , Dasypyrum , Pseudoroegneria , Elymus , Agropyron . Представители данных видов имеют разный уровень плоидности (ди-, тетра, гека- и даже декаплоиды) и могут сочетать в себе геномы J (=E), St, W, Y, X, V, H, P, а также их различные варианты...

Еще

Пшеница, гены, отдаленная гибридизация, пырей, пшенично-пырейные гибриды

Короткий адрес: https://sciup.org/142220116

IDR: 142220116   |   DOI: 10.15389/agrobiology.2019.3.409rus

Список литературы Использование генетического потенциала многолетних дикорастущих злаков в селекционном улучшении пшеницы

  • Balfourier F., Bouchet S., Robert S., De Oliveira R., Rimbert H., Kitt J., Choulet F., International Wheat Genome Sequencing Consortium, BreedWheat Consortium, Paux E. Worldwide phylogeography and history of wheat genetic diversity. Science Advances, 2019, 5(5): EAAV0536 ( ) DOI: 10.1126/sciadv.aav0536
  • Jaradat A.A. Phenotypic divergence in the meta-population of the Hourani durum wheat landrace. J. Food Agric. Env., 2006, 4(3): 186-191 ( ) DOI: 10.1234/4.2006.942
  • Jaradat A.A. Wheat landraces: a mini review. Emir. J. Food Agric., 2013, 25(1): 20-29 ( ) DOI: 10.9755/ejfa.v25i1.15376
  • Girma E. Genetic erosion of wheat (Triticum spp.): concept, research results and challenges. Journal of Natural Sciences Research, 2017, 7(23): 72-81.
  • Miller J. Genetic erosion: crop plants threatened by government neglect. Science New Series, 1973, 182(4118): 1231-1233 ( ) DOI: 10.1126/science.182.4118.1231
  • Day P.R. Genetic variability of crops. Annual Review of Phytopathology, 1973, 11(1): 293-312 ( )
  • DOI: 10.1146/annurev.py.11.090173.001453
  • Дзюбенко Н.И. К оценке генетической эрозии экономически значимых дикорастущих видов бобовых растений на обследованных территориях Азербайджана и Грузии. Мат. Межд. науч.-практ. конф. «Генетические ресурсы культурных растений, проблемы мобилизации, инвентаризации, сохранения и изучения генофонда важнейших сельскохозяйственных культур для решения приоритетных задач селекции». СПб, 2001: 24-26.
  • Мартынов С.П., Добротворская Т.В. Генетическая эрозия в сортах мягкой пшеницы, реализованных в России. Мат. конф. «Генетика в XXI веке: современное состояние и перспективы развития». М., 2004: 75.
  • Пухальский В.А. Проблемы генетической теории селекции растений. Вестник ВОГиС, 2005, 9(3): 306-316.
  • Глазко В.И., Глазко Т.Т. Современные направления «устойчивой» интенсификации сельского хозяйства. Известия Тимирязевской сельскохозяйственной академии, 2010, 3: 101-114
  • Тарантул В.З. Толковый словарь по молекулярной и клеточной биотехнологии. Т. 1. М., 2015.
  • Глазко В.И. Генетическая компонента и устойчивое развитие агроэкосистем. Сельскохозяйственная биология, 2007, 6: 9-15.
  • Гончаров Н.П., Шумный В.К. От сохранения генетических коллекций к созданию национальной системы хранения генофондов растений в вечной мерзлоте. Вестник ВОГиС, 2008, 12(4): 509-523.
  • Горбунов Ю., Соадатова Р., Казанцева Е. Генофонд растений Красной книги Российской Федерации, сохраняемый в коллекциях ботанических садов и дендрариев. М., 2012.
  • Шаманин В.П., Потоцкая И.В., Трущенко А.Ю., Чурсин А.С., Кузьмина С.П., Кротова Л.А. Расширение генетического разнообразия генофонда яровой пшеницы. Вестник Алтайского государственного аграрного университета, 2012, 5(91): 13-16.
  • FAOSTAT. Режим доступа: http://www.fao.org/faostat/en/#data. Дата обращения 30.01.2019.
  • Smith S., Bubeck D., Nelson B., Stanek J., Gerke J. Genetic diversity and modern plant breeding. In: Genetic diversity and erosion in plants. Indicators and prevention. V. 1/M.R. Ahuja, S. Mohan Jain (eds.). Springer International Publishing, Switzerland, 2015: 55-88.
  • Govindaraj M., Vetriventhan M., Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International, 2015, 2015: Article ID 431487 ( )
  • DOI: 10.1155/2015/431487
  • Аблова И.Б., Беспалова Л.А., Колесников Ф.А., Набоков Г.Д., Ковтуненко В.Я., Филобок В.А., Давоян Р.О., Худокормова Ж.Н., Мохова Л.М., Левченко Ю.Г., Тархов А.С. Принципы и методы селекции пшеницы на устойчивость к болезням в КНИИСХ им. П.П. Лукьяненко. Зерновое хозяйство России, 2016, 5: 1-7.
  • Novoselskaya-Dragovich A.Yu., Fisenko A.V., Imasheva A.G., Pukhalskiy V.A. Comparative analysis of the genetic diversity dynamics at gliadin loci in the winter common wheat Triticum aestivum L. cultivars developed in Serbia and Italy over 40 years of scientific breeding. Russian Journal of Genetics, 2007, 43(11): 1236-1242 ( )
  • DOI: 10.1134/S1022795407110051
  • Мартынов С.П., Добротворская Т.В. Генеалогический и статистический анализ генетического разнообразия с помощью информационно-аналитической системы генетических ресурсов пшеницы GRIS. Труды по прикладной ботанике, генетике и селекции, 2012, 169: 193-209.
  • Orabi J., Jahoor A., Backes G. Changes in allelic frequency over time in European bread wheat (Triticum aestivum L.) varieties revealed using DArT and SSR markers. Euphytica, 2014, 197(3): 447-462 ( )
  • DOI: 10.1007/s10681-014-1080-x
  • Wulff B.B., Moscou M.J. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front. Plant Sci., 2014, 5: 692 ( )
  • DOI: 10.3389/fpls.2014.00692
  • Wang R.R.C. Agropyron and Psathyrostachys. In: Wild crop relatives: genomic and breeding resources. V. 1/C. Kole (ed.). Springer Berlin Heidelberg, 2011: 77-108 ( )
  • DOI: 10.1007/978-3-642-14228-4_2
  • Zhang C., Fan X., Yu H.Q., Zhang L., Wang X.L., Zhou Y.H. Different maternal genome donor to Kengyilia species inferred from chloroplast trnL-F sequences. Biologia Plantarum, 2009, 53(4): 759-763 ( )
  • DOI: 10.1007/s10535-009-0139-3
  • Mahelka V., Kopecky D., Pastova L. On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae). BMC Evolutionary Biology, 2011, 11(1): 127 ( )
  • DOI: 10.1186/1471-2148-11-127
  • Wang Q., Xiang J., Gao A., Yang X., Liu W., Li X., Li L. Analysis of chromosomal structural polymorphisms in the St, P and Y Genomes of Triticeae (Poaceae). Genome, 2010, 53: 241-249 ( )
  • DOI: 10.1139/g09-098
  • Mason-Gamer R.J. Phylogeny of a genomically diverse group of Elymus (Poaceae) allopolyploids reveals multiple levels of reticulation. PLoS ONE. 2013, 8: e78449 ( )
  • DOI: 10.1371/journal.pone.0078449
  • Wang R.R.-C., Larson S.R., Jensen K.B., Bushman S., DeHaan L., Wang S., Yan X. Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species. Genome, 2015, 58: 63-70 ( )
  • DOI: 10.1139/gen-2014-0186
  • Chen Q., Conner R.L., Laroche A., Thomas J.B. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome, 1998, 41(4): 580-586 ( )
  • DOI: 10.1139/g98-055
  • Divashuk M.G., Khuat T.M., Kroupin P.Y., Kirov I.V., Romanov D.V., Kiseleva A.V., Khrustaleva L.I., Alexeev D.G., Zelenin A.S., Klimushina M.V., Razumova O.V., Karlov G.I. Variation in copy number of Ty3/Gypsy centromeric retrotransposons in the genomes of Thinopyrum intermedium and its diploid progenitors. PLoS ONE, 2016, 11(4): e0154241 ( )
  • DOI: 10.1371/journal.pone.0154241
  • Baum B., Edwards T., Johnson D. What does the nr5S DNA multigene family tell us about the genomic relationship between Dasypyrum breviaristatum and D. villosum (Triticeae: Poaceae)? Mol. Genet. Genomics, 2014, 289: 553-565 ( )
  • DOI: 10.1007/s00438-014-0825-5
  • Gradzielewska A., Tyrka M., Leśniowska-Nowak J., Nazaruk J. Genetic relationships among representatives of Dasypyrum, Secale and Triticum species revealed with RAPD and ISSR markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2014, 42(2): 420-430 ( )
  • DOI: 10.15835/nbha.42.2.9662
  • Zhang P., Dundas I.S., Xu S.S., Friebe B., McIntosh R.A., Raupp W.J. Chromosome engineering techniques for targeted introgression of rust resistance from wild wheat relatives. In: Wheat rust diseases. Methods and protocols, methods in molecular biology, Vol. 1659/S. Periyannan (ed.). Springer Science+Business Media LLC, 2017: 163-172 ( )
  • DOI: 10.1007/978-1-4939-7249-4_14
  • Ceoloni C., Kuzmanovic L., Forte P., Virili M. E., Bitti A. Wheat-perennial Triticeae introgressions: major achievements and prospects. In: Alien introgression in wheat: cytogenetics, molecular biology, and genomics/M. Molnár-Láng, C. Ceoloni, J. Doležel (eds.). Springer International Publishing Switzerland, 2015: 273-314 ( )
  • DOI: 10.1007/978-3-319-23494-6_11
  • Khuat T.M.L., Divashuk M.G., Kroupin P.Yu., Nguyen Ph.A., Kiseleva A.V., Karlov G.I. Differences in ploidy level and genome constitution revealed by cytogenetic analysis of Pseudoroegneria germplasm accessions: case study. Известия Тимирязевской сельскохозяйственной академии, 2015, 2: 29-35.
  • Alexandrov O.S., Divashuk M.G., Karlov G.I. Development of the St/J and V genome specific molecular marker based on 5S rDNA polymorphism in Thinopyrum bessarabicum, Pseudoroegneria spicata, and Dasypyrum villosum. Moscow University Biological Sciences Bulletin, 2018, 73(1): 18-23 ( )
  • DOI: 10.3103/S0096392518010017
  • Кочешкова А.А., Дивашук М.Г., Крупин П.Ю., Карлов Г.И. Клонирование и анализ последовательностей генов Viviparous-1 у дикорастущих сородичей пшеницы. Вестник Башкирского университета, 2013, 18(3): 736-738.
  • Почтовый А.А., Карлов Г.И., Дивашук М.Г. Создание молекулярных маркеров на гены Dreb пырейного происхождения, обеспечивающих повышение засухоустойчивости в геномах злаков. Вестник Башкирского университета, 2013, 18(3): 745-747.
  • Климушина М.В. Сравнительный молекулярно-генетический анализ генов Wx у различных видов трибы пшеницевых. Автореф. канд. дис. М., 2013.
  • Kocheshkova A.A., Divashuk M.G., Kroupin P.Y., Karlov G.I. Development of PCR-based STS marker for identification of Viviparous-1 gene of Thinopyrum species in wheat background. Известия Тимирязевской сельскохозяйственной академии, 2014, 5: 5-12.
  • Pochtovyy A.A., Kroupin P.Yu., Divashuk M.G., Kocheshkova A.A., Sokolov P.A., Karlov G.I. Clonning of Dreb1 gene in wheat wild relatives and development of a DNA marker for its monitoring in wheat background. Sel'skokhozyaistvennaya Biologiya , 2018, 53(3): 499-510 ( )
  • DOI: 10.15389/agrobiology.2018.3.499eng
  • Кузнецова В.М. Изучение локализации тандемных повторов в геномах рода Dasypyrum. Мат. XIX Всерос. конф. молодых ученых «Биотехнология в растениеводстве, животноводстве и сельскохозяйственной микробиологии» (15-16 апреля 2019 года, г. Москва). М., 2019: 37-38.
  • Соколов П.А., Крупин П.Ю., Дивашук М.Г., Карлов Г.И. Использование PLUG-маркеров для анализа коллекции дисомно дополненных линий мягкой пшеницы хромосомами Dasypyrum villosum. Известия Тимирязевской сельскохозяйственной академии, 2017, 4: 147-157.
  • Shen X., Ohm H. Fusarium head blight resistance derived from Lophopyrum elongatum chromosome 7E and its augmentation with Fhb1 in wheat. Plant Breeding, 2006, 125: 424-429 ( )
  • DOI: 10.1111/j.1439-0523.2006.01274.x
  • Jauhar P.P., Peterson T.S., Xu S.S. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome, 2009, 52: 467-483 (doi 10.1139/g09-014)
  • DOI: :10.1139/g09-014
  • Jauhar P.P., Peterson T.S. Cytological and molecular characterization of homoeologous group-1 chromosomes in hybrid derivatives of a durum disomic alien addition line. Plant Genome, 2011, 4: 102-109 ( )
  • DOI: 10.3835/plantgenome2011.01.0002
  • Liu H., Dai Y., Chi D., Huang S., Li H., Duan Y., Cao W., Gao Y., Fedak G., Chen J. Production and molecular cytogenetic characterization of a durum wheat-Thinopyrum elongatum 7E disomic addition line with resistance to Fusarium Head Blight. Cytogenet. Genome Res., 2017, 153(3): 165-173 ( )
  • DOI: 10.1159/000486382
  • Anderson J.M., Bucholtz D.L., Sardesai N., Santini J.B., Gyulai G., Williams C.E., Stephen B., Goodwin S.B. Potential new genes for resistance to Mycosphaerella graminicola identified in Triticum aestivum-Lophopyrum elongatum disomic substitution lines. Euphytica, 2010, 172: 251-262 ( )
  • DOI: 10.1007/s10681-009-0061-y
  • Mullan D., Mirzaghaderi G., Walker E., Colmer T., Francki M. Development of wheat-Lophopyrum elongatum recombinant lines for enhanced sodium ‘exclusion' during salinity stress. Theor. Appl. Genet., 2009, 119(7): 1313-1323 ( )
  • DOI: 10.1007/s00122-009-1136-9
  • Lammer D., Cai X., Arterburn M., Chatelain J., Murray T., Jones S. A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J. Exp. Bot., 2004, 55: 1715-1720 ( )
  • DOI: 10.1093/jxb/erh209
  • Li D., Long D., Li T., Wu Y., Wang Y., Zeng J., Xu L., Fan X., Sha L., Zhang H., Zhou Y., Kang H. Cytogenetics and stripe rust resistance of wheat-Thinopyrum elongatum hybrid derivatives. Molecular Cytogenetics, 2018, 11: 16 ( )
  • DOI: 10.1186/s13039-018-0366-4
  • Jensen K.B., Griffin G.D. Resistance of diploid Triticeae species and accessions to the Columbia root-knot nematode, Meloidogyne chitwoodi. J. Nematol., 1994, 26(4S): 635-639.
  • King I., Purdie K., Rezanoor H., Koebner R., Miller T., Reader S., Nicholson P. Characterization of Thinopyrum bessarabicum chromosome segments in wheat using random amplified polymorphic DNAs (RAPIDs) and genomic in situ hybridization. Theor. Appl. Genet., 1993, 86: 895-900 ( )
  • DOI: 10.1007/BF00211038
  • Luo Z., Chen F., Feng D., Xia G. LMW-GS genes in Agropyron elongatum and their potential value in wheat breeding. Theor. Appl. Genet., 2005, 111: 272-280 ( )
  • DOI: 10.1007/s00122-005-2021-9
  • Gao X., Liu S.W., Sun Q., Xia G.M. High frequency of HMW-GS sequence variation through somatic hybridization between Agropyron elongatum and common wheat. Planta, 2010, 231: 245-250 ( )
  • DOI: 10.1007/s00425-009-1040-1
  • Qi Z., Du P., Qian B., Zhuang L., Chen H., Chen T., Shen J., Guo J., Feng Y., Pei Z. Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS.2BL) translocation line. Theor. Appl. Genet., 2010, 121: 589-597 ( )
  • DOI: 10.1007/s00122-010-1332-7
  • Patokar C., Sepsi A., Schwarzacher T., Kishii M., Heslop-Harrison J. Molecular cytogenetic characterization of novel wheat-Thinopyrum bessarabicum recombinant lines carrying intercalary translocations. Chromosoma, 2015, 125(1): 163-172 ( )
  • DOI: 10.1007/s00412-015-0537-6
  • Grewal S., Yang C., Edwards S., Scholefield D., Ashling S., Burridge A., King I., King J. Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. Theor. Appl. Genet., 2017, 131(2): 389-406 ( )
  • DOI: 10.1007/s00122-017-3009-y
  • McArthur R., Zhu X., Oliver R., Klindworth D., Xu S., Stack R., Wang R., Cai X. Homoeology of Thinopyrum junceum and Elymus rectisetus chromosomes to wheat and disease resistance conferred by the Thinopyrum and Elymus chromosomes in wheat. Chromosome Res., 2012, 20(6): 699-715 ( )
  • DOI: 10.1007/s10577-012-9307-y
  • Wang R., Li X., Hu Z., Zhang J., Larson S., Zhang X., Grieve C., Shannon M. Development of salinity tolerant wheat recombinant lines from a wheat disomic addition line carrying a Thinopyrum junceum chromosome. Int. J. Plant Sci., 2003, 164(1): 25-33 ( )
  • DOI: 10.1086/344556
  • Li W., Zhang Q., Wang S., Langham M., Singh D., Bowden R., Xu S. Development and characterization of wheat-sea wheatgrass (Thinopyrum junceiforme) amphiploids for biotic stress resistance and abiotic stress tolerance. Theor. Appl. Genet., 2018, 132(1): 163-175 ( )
  • DOI: 10.1007/s00122-018-3205-4
  • Li H., Wang X. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J. Genet. Genomics, 2009, 36(9): 557-565 ( )
  • DOI: 10.1016/S1673-8527(08)60147-2
  • Rahardjo C., Gajadeera C., Simsek S., Annor G., Schoenfuss T., Marti A., Ismail B. Chemical characterization, functionality, and baking quality of intermediate wheatgrass (Thinopyrum intermedium). J. Cereal Sci., 2018, 83: 266-274 ( )
  • DOI: 10.1016/j.jcs.2018.09.002
  • Banjade J. Effects of dough conditioners on rheology and bread quality of intermediate wheatgrass. M.S. thesis. University of Minnesota, 2018.
  • Jungers J.M., Frahm C.S., Tautges N.E., Ehlke N.J., Wells M.S., Wyse D.L., Sheaffer C.C. Growth, development, and biomass partitioning of the perennial grain crop Thinopyrum intermedium. Ann. Appl. Biol., 2018, 172(3): 346-354 ( )
  • DOI: 10.1111/aab.12425
  • Цицин Н.В. Мнoгoлетняя пшеница. М., 1978.
  • Cauderon Y., Saigne B., Dauge M. The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. Proc. 4th International Wheat Genet Symposium/L.M.S. Sears, E.R. Sears (eds.). Columbia, Mo., 1973: 401-407
  • Georgieva M., Kruppa K., Tyankova N., Molnar Lang M. Molecular cytogenetic identification of a novel hexaploid wheat-Thinopyrum intermedium partial amphiploid with high protein content. Turk. J. Biol., 2016, 40: 554-560 ( )
  • DOI: 10.3906/biy-1503-30
  • Cui L., Ren Y., Murray T., Yan W., Guo Q., Niu Y., Sun Y., Li H. Development of perennial wheat through hybridization between wheat and wheatgrasses: a review. Engineering, 2018, 4(4): 507-513 ( )
  • DOI: 10.1016/j.eng.2018.07.003
  • Kroupin P., Divashuk M., Belov V., Glukhova L., Aleksandrov O., Karlov G. Comparative molecular cytogenetic characterization of partial wheat-wheatgrass hybrids. Rus. J. Genet., 2011, 47(4): 432-437 ( )
  • DOI: 10.1134/s1022795411040077
  • Трифонова А.А., Борис К.В., Дедова Л.В., Мельник В.А., Иванова Л.П., Кузьмина Н.П., Завгородний С.В., Упелниек В.П. Анализ полиморфизма генома представителей синтетического вида ½Trititrigia cziczinii Tsvel. методом AFLP. Вавиловский журнал генетики и селекции, 2018, 22(6): 648-653 ( )
  • DOI: 10.18699/VJ18.406
  • Дивашук М.Г., Крупин П.Ю., Баженов М.С., Климушина М.В., Белов В.И., Семенова Е.В., Карлов Г.И. Молекулярно-генетический анализ состава запасных белков в образцах коллекции пшенично-пырейных гибридов. Известия Тимирязевской сельскохозяйственной академии, 2012, 5: 29-37.
  • Белов В.И., Иванова Л.П., Завгородний С.В., Упелниек В.П. Селекционно-генетические ресурсы отрастающих промежуточных пшенично-пырейных гибридов (2n = 56). Бюллетень Главного ботанического сада, 2013, 4(199): 49-55.
  • Крупин П.Ю., Дивашук М.Г., Белов В.И., Жемчужина А.И., Коваленко Е.Д., Упелниек В.П., Карлов Г.И. Исследование промежуточных пшенично-пырейных гибридов на устойчивость к листовой ржавчине. Cельскохозяйственная биология, 2013, 48(1): 68-73 ( )
  • DOI: 10.15389/agrobiology.2013.1.68rus
  • Крупин П.Ю., Дивашук М.Г., Баженов М.С., Гриценко Л.А., Тараканов И.Г., Упелниек В.П., Белов В.И., Почтовый А.А., Старикова Е.В., Кхуат Тхи Май Л., Климушина М.В., Давыдова А.Н., Карлов Г.И. Полиморфизм реакции проростков пшенично-пырейных гибридов на засоление. Сельскохозяйственная биология, 2013, 48(5): 44-53 ( )
  • DOI: 10.15389/agrobiology.2013.5.44rus
  • Kocheshkova A.A., Kroupin P.Y., Bazhenov M.S., Karlov G.I., Pochtovyy A.A., Divashuk M.G., Upelniek V.P., Belov V.I. Pre-harvest sprouting resistance and haplotype variation of ThVp-1 gene in the collection of wheat-wheatgrass hybrids. PLoS ONE, 2017, 12(11): e0188049 ( )
  • DOI: 10.1371/journal.pone.0188049
  • Liu J., Chang Z., Zhang X., Yang Z., Li X., Jia J., Zhan H., Guo H., Wang J. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor. Appl. Genet., 2013, 126(1): 265-274 ( )
  • DOI: 10.1007/s00122-012-1979-3
  • Zhan H., Zhang X., Li G., Pan Z., Hu J., Li X., Qiao L., Jia J., Guo H., Chang Z., Yang Z. Molecular characterization of a new wheat-Thinopyrum intermedium translocation line with resistance to powdery mildew and stripe rust. Int. J. Mol. Sci., 2015, 16(1): 2162-2173 ( )
  • DOI: 10.3390/ijms1601216
  • Wang Y., Wang H. Characterization of three novel wheat-Thinopyrum intermedium addition lines with novel storage protein subunits and resistance to both powdery mildew and stripe rust. J. Genet. Genomics, 2016 43(1): 45-48 ( )
  • DOI: 10.1016/j.jgg.2015.10.004
  • Salina E.A., Adonina I.G., Stasyuk A.I., Leonova I.N., Badaeva E.D., Shishkina A.A., Kroupin P.Y., Divashuk M.G., Starikova E.V., Khuat T.M.L., Karlov G.I., Syukov V.V. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica, 2015, 204(1): 91-101 ( )
  • DOI: 10.1007/s10681-014-1344-5
  • Sibikeev S.N., Druzhin A.E., Badaeva E.D., Shishkina A.A., Dragovich A.Y., Gultyaeva E.I., Kroupin P.Y., Karlov G.I., Khuat T.M., Divashuk M.G. Comparative analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat-wheatgrass substitutions. Russ. J. Genet., 2017, 53(3): 314-324 ( )
  • DOI: 10.1134/s1022795417030115
  • Davoyan R.O., Bebyakina I.V., Davoyan E.R., Zinchenco A.N., Zubanova Y.S., Mikov D.S. Introgression of common wheat lines with genetic material of Agropyron glaucum. Russian Journal of Genetics: Applied Research, 2016, 6(1): 54-61 ( )
  • DOI: 10.1134/s2079059716010056
  • Friebe B., Jiang J.M., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat alien translocations conferring resistance to diseases and pests: current status. Euphytica, 1996, 91(1): 59-87 ( )
  • DOI: 10.1007/bf00035277
  • Liu W., Seifers D.L., Qi L.L., Friebe B., Gill B.S. A compensating wheat-Thinopyrum intermedium Robertsonian translocation conferring resistance to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci., 2011, 51(6): 2382-2390 ( )
  • DOI: 10.2135/cropsci2011.03.0118
  • Danilova T.V., Zhang G., Liu W., Friebe B., Gill B.S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theor. Appl. Genet., 2017, 130(3): 549-556 ( )
  • DOI: 10.1007/s00122-016-2834-8
  • Banks P., Larkin P., Bariana H., Lagudah E., Appels R., Waterhouse P., Brettell R., Chen X., Xu H., Xin Z., Qian Y., Zhou X., Cheng Z., Zhou G. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome, 1995, 38(2): 395-405 ( )
  • DOI: 10.1139/g95-051
  • Lang T., La S., Li B., Yu Z., Chen Q., Li J., Yang E., Li G., Yang Z. Precise identification of wheat-Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome, 2018, 61(3): 177-185 ( )
  • DOI: 10.1139/gen-2017-0229
  • Huang Q., Li X., Chen W.Q., Xiang Z.P., Zhong S.F., Chang Z.J., Zhang M., Zhang H.Y., Tan F.Q., Ren Z.L., Luo P.G. Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor. Appl. Genet., 2014, 127(4): 843-853 ( )
  • DOI: 10.1007/s00122-014-2261-7
  • Luo P.G., Luo H.Y., Chang Z.J., Zhang H.Y., Zhang M., Ren Z.L. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet., 2009, 118(6): 1059-1064 ( )
  • DOI: 10.1007/s00122-009-0962-0
  • He R., Chang Z., Yang Z., Yuan Z., Zhan H., Zhan X., Liu J. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor. Appl. Genet., 2009, 118(6): 1173-1180 ( )
  • DOI: 10.1007/s00122-009-0971-z
  • Fedak G., Han F. Characterization of derivatives from wheat-Thinopyrum wide crosses. Cytogenet. Genome Res., 2005, 109(1-3): 350-359 ( )
  • DOI: 10.1159/000082420
  • Zhang Z.Y., Xu J.S., Xu Q.J., Larkin P., Xin Z.Y. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker assisted selection. Theor. Appl. Genet., 2004, 109(2): 433-439 ( )
  • DOI: 10.1007/s00122-004-1649-1
  • Ayala-Navarrete L., Tourton E., Mechanicos A.A., Larkin P.J. Comparison of Thinopyrum intermedium derivatives carrying barley yellow dwarf virus resistance in wheat. Genome, 2009, 52(6): 537-546 ( )
  • DOI: 10.1139/g09-028
  • Zhang Z.Y., Lin Z.S., Xin Z.Y. Research progress in BYDV resistance genes derived from wheat and its wild relatives. J. Genet. Genomics, 2009, 36(9): 567-573 ( )
  • DOI: 10.1016/s1673-8527(08)60148-4
  • Friebe B., Qi L.L., Wilson D.L., Chang Z.J., Seifers D.L., Martin T.J., Fritz A.K., Gill B.S. Wheat-Thinopyrum intermedium recombinants resistant to wheat streak mosaic virus and Triticum mosaic virus. Crop Sci., 2009, 49(4): 1221-1226 ( )
  • DOI: 10.2135/cropsci2008.09.0513
  • Friebe B., Mukai Y., Dhaliwal H.S., Martin T.J., Gill B.S. Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germplasm by C-banding and in situ hybridization. Theor. Appl. Genet., 1991, 81(3): 381-389 ( )
  • DOI: 10.1007/bf00228680
  • Larkin P.J., Newell M.T., Hayes R.C., Aktar J., Norton M.R., Moroni S.J., Wade L.J. Progress in developing perennial wheats for grain and grazing. Crop and Pasture Science, 2014, 65(11): 1147-1164 ( )
  • DOI: 10.1071/CP13330
  • Lloyd S. Perennial wheat. Independent Project in Biology. 2015. Режим доступа: http://stud.epsilon.slu.se/7778/. Без даты.
  • Kuzmanovic L., Gennaro A., Benedettelli S., Dodd I.C., Quarrie S.A., Ceoloni C. Structural-functional dissection and characterization of yield-contributing traits originating from a group 7 chromosome of the wheatgrass species Thinopyrum ponticum after transfer into durum wheat. J. Exp. Bot., 2014, 65(2): 509-525 ( )
  • DOI: 10.1093/jxb/ert393
  • Shen X., Ohm H. Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Mol. Breeding, 2007, 20(2): 131-140 ( )
  • DOI: 10.1007/s11032-007-9079-9
  • Forte P., Virili M.E., Kuzmanović L., Moscetti I., Gennaro A., D'Ovidio R., Ceoloni C. A novel assembly of Thinopyrum ponticum genes into the durum wheat genome: pyramiding Fusarium head blight resistance onto recombinant lines previously engineered for other beneficial traits from the same alien species. Mol. Breeding, 2014, 34(4): 1701-1716 ( )
  • DOI: 10.1007/s11032-014-0175-3
  • Singh M., Mallick N., Chand S., Kumari P., Sharma J., Sivasamy M., Jayaprakash P., Prabhu K., Jha S., Vinod Marker-assisted pyramiding of Thinopyrum-derived leaf rust resistance genes Lr19 and Lr24 in bread wheat variety HD2733. J. Genet., 2017, 96(6): 951-957 ( )
  • DOI: 10.1007/s12041-017-0859-7
  • Li H., Chen Q., Conner R.L., Guo B., Zhang Y., Graf R.J., Laroche A., Jia X., Liu G., Chu C. Molecular characterization of a wheat-Thinopyrum ponticum partial amphiploid and its derivatives for resistance to leaf rust. Genome, 2003, 46(5): 906-913 ( )
  • DOI: 10.1139/g03-053
  • Dundas I., Zhang P., Verlin D., Graner A., Shepherd K. Chromosome engineering and physical mapping of the Thinopyrum ponticum translocation in wheat carrying the rust resistance gene Sr26. Crop Sci., 2015, 55(2): 648-657 ( )
  • DOI: 10.2135/cropsci2014.08.0590
  • Mago R., Zhang P., Xia X., Zhang J., Hoxha S., Lagudah E., Graner A., Dundas I. Transfer of stem rust resistance gene SrB from Thinopyrum ponticum into wheat and development of a closely linked PCR-based marker. Theor. Appl. Genet., 2019, 132(2): 371-382 ( )
  • DOI: 10.1007/s00122-018-3224-1
  • McIntosh R.A., Dyck P.L., Green G.J. Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Aust. J. Agric. Res., 1977, 28(1): 37-45 ( )
  • DOI: 10.1071/ar9770037
  • Gupta S.K., Charpe A., Prabhu K.V., Haque Q.M.R. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor. Appl. Genet., 2006, 113(6): 1027-1036 ( )
  • DOI: 10.1007/s00122-006-0362-7
  • Friebe B., Jiang J., Knott D.R., Gill B.S. Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci., 1994, 34(2): 400-404 ( 10.2135/cropsci1994.0011183x003400020018x)
  • DOI: :10.2135/cropsci1994.0011183x003400020018
  • Kim N.-S., Armstrong K., Knott D.R. Molecular detection of Lophopyrum chromatin in wheat-Lophopyrum recombinants and their use in physical mapping of chromosome 7D. Theor. Appl. Genet., 1993, 85(5): 561-567 ( )
  • DOI: 10.1007/bf00220914
  • Chen G., Zheng Q., Bao Y., Liu S., Wang H., Li X. Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin. J. Biosci., 2012, 37(1): 149-155 ( )
  • DOI: 10.1007/s12038-011-9175-1
  • Pozniak C., Knox R., Clarke F., Clarke J. Identification of QTL and association of a phytoene synthase gene with endosperm color in durum wheat. Theor. Appl. Genet., 2007, 114: 525-537 ( )
  • DOI: 10.1007/s00122-006-0453-5
  • Liu L., Luo Q., Li H., Li B., Li Z., Zheng Q. Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theor. Appl. Genet., 2018, 131(11): 2359-2370 ( )
  • DOI: 10.1007/s00122-018-3158-7
  • Wang R. Diploid perennial intergeneric hybrids in the tribe Triticeae. III. Hybrids among Secale montanum, Pseudoroegneria spicata, and Agropyron mongolicum. Genome, 1987, 29(1): 80-84 ( )
  • DOI: 10.1139/g87-014
  • Qin L., Liang Y., Yang D., Xia G., Liu S. Characterisation of low molecular weight glutenin subunit genes from Pseudoroegneria spicata and Pd. strigosa. J. Appl. Genet., 2015, 56(1): 27-35 ( )
  • DOI: 10.1007/s13353-014-0229-6
  • Yang Z.J., Zhang T., Liu C., Li G.R., Zhou J.P., Zhang Y., Ren Z.L. Identification of wheat-Dasypyrum breviaristatum addition lines with stripe rust resistance using C-banding and genomic in situ hybridization. In: The 11th International wheat genetics symposium proceedings/R. Appels, R. Eastwood, E. Lagudah, P. Langridge, M. Mackay, L. McIntyre, P. Sharp (eds.). Sydney University Press, Sydney, 2008: 1-2.
  • Liu C., Qi L., Liu W., Zhao W., Wilson J., Friebe B., Gill B. Development of a set of compensating Triticum aestivum-Dasypyrum villosum Robertsonian translocation lines. Genome, 2011, 54(10): 836-844 ( )
  • DOI: 10.1139/g11-051
  • Li G.-R., Zhao J.-M., Li D.-H., Yang E.-N., Huang Y-.F., Liu C., Yang Z.-J. A novel wheat-Dasypyrum breviaristatum substitution line with stripe rust resistance. Cytogenet. Genome Res., 2014, 143(4): 280-287 ( )
  • DOI: 10.1159/000366051
  • Wang H., Yu Z., Li B., Lang T., Li G., Yang Z. Characterization of new wheat-Dasypyrum breviaristatum introgression lines with superior gene(s) for spike length and stripe rust resistance. Cytogenet. Genome Res., 2018, 156: 117-125 ( )
  • DOI: 10.1159/000493562
  • Wang H., Zhang H., Li B., Yu Z., Li G., Zhang J., Yang Z. Molecular cytogenetic characterization of new wheat-Dasypyrum breviaristatum introgression lines for improving grain quality of wheat. Front. Plant Sci., 2018, 9: 365 ( )
  • DOI: 10.3389/fpls.2018.00365
  • Gradzielewska A. The genus Dasypyrum-part 2. Dasypyrum villosum -a wild species used in wheat improvement. Euphytica, 2006, 152(3): 441-454 ( )
  • DOI: 10.1007/s10681-006-9245-x
  • De Pace C., Vaccino P., Cionini P.G., Pasquini M., Bizzarri M., Qualset C.O. Dasypyrum. In: Wild crop relatives: genomic and breeding resources. Cereals/C. Kole (ed.). Springer, Berlin, 2011: 185-292 ( )
  • DOI: 10.1007/978-3-642-14228-4
  • Uslu E., Miller T.E., Rezanoor N.H., Nicholson P. Resistance of Dasyryrum villosum to the cereal eyespot pathogens Tapesia yallundae and Tapesia acuformis. Euphytica, 1998, 103: 203-209 ( )
  • DOI: 10.1023/A:1018340018838
  • Bizzarri M., Pasquini M., Matere A., Sereni L., Vida G., Sepsi A., Molnar-Lang M., De Pace C. Dasypyrum villosum 6V chromosome as source of adult plant resistance to Puccinia triticina in wheat. Proc. the 53rd Italian society of agricultural genetics annual congress. Torino, Italy, 2009: 16-19.
  • Zhao W., Qi L., Gao X., Zhang G., Dong J., Chen Q., Friebe B., Gill B. Development and characterization of two new Triticum aestivum-Dasypyrum villosum Robertsonian translocation lines T1DS.1V#3L and T1DL.1V#3S and their effect on grain quality. Euphytica, 2010, 175(3): 343-350 ( 10.1007/s10681-010-0177-0)
  • DOI: :10.1007/s10681-010-0177-0
  • Zhang R.Q., Hou F., Feng Y.G., Zhang W., Zhang M.Y., Chen P.D. Characterization of a Triticum aestivum-Dasypyrum villosum T2VS.2DL translocation line expressing a longer spike and more kernels traits. Theor. Appl. Genet., 2015, 128(12): 2415-2425 ( )
  • DOI: 10.1007/s00122-015-2596-8
  • Zhang R., Fan Y., Kong L., Wang Z., Wu J., Xing L., Cao A., Feng Y. Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theor. Appl. Genet., 2018, 131(12): 2613-2620 ( )
  • DOI: 10.1007/s00122-018-3176-5
  • Huang D.H., Lin Z.S., Chen X., Zhang Z.Y., Chen C.C., Cheng S.H., Xin Z. Molecular characterization of a Triticum durum-Haynaldia villosa amphiploid and its derivatives for resistance to Gaeumannomyces graminis var. tritici. Agricultural Sciences in China, 2017, 6(5): 513-521 ( )
  • DOI: 10.1016/s1671-2927(07)60077-7
  • Zhang J., Jiang Y., Wang Y., Guo Y., Long H., Deng G., Chen Q., Xuanet P. Molecular markers and cytogenetics to characterize a wheat-Dasypyrum villosum 3V (3D) substitution line conferring resistance to stripe rust. PLoS ONE, 2018, 13(8): e0202033 ( )
  • DOI: 10.1371/journal.pone.0202033
  • Yildirim A., Jones S.S., Murray T.D. Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4V of Dasypyrum villosum in a wheat background. Genome, 1998, 41(1): 1-6 ( )
  • DOI: 10.1139/g97-092
  • Yildirim A., Jones S.S., Murray T.D., Line R.F. Evaluation of Dasypyrum villosum populations for resistance to cereal eyespot and stripe rust pathogens. Plant Dis., 2000; 84(1): 40-44 ( )
  • DOI: 10.1094/PDIS.2000.84.1.40
  • Zhang Q., Li Q., Wang X., Wang H., Lang S., Wang Y, Wang S., Chen P., Liu D. Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS.4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica, 2005, 145(3): 317-332 ( )
  • DOI: 10.1007/s10681-005-1743-8
  • Zhang R.Q., Sun B.X., Chen J., Cao A.Z., Xing L.P., Feng Y.G., Lan C., Chen P. Pm55, a developmental-stage and tissue specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor. Appl. Genet., 2016, 129(1): 1975-1984 ( )
  • DOI: 10.1007/s00122-016-2753-8
  • Chen P.D., Qi L.L., Zhou B., Zhang S.Z., Liu D.J. Development and molecular cytogenetic analysis of wheat Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet., 1995, 91(6-7): 1125-1128 ( )
  • DOI: 10.1007/BF00223930
  • Pumphrey M., Jin Y., Rouse M., Qi L.L., Friebe B., Gill B.S. Resistance to stem rust race TTKS in wheat relative Haynaldia villosa. Proc. the 11th international wheat genetics symposium/R. Appels, E. Lagudah, P. Langridge, M. Mackay (eds.). University Press, Sydney, Australia, 2008: 151.
  • Zhang R.Q., Feng Y.G., Li H.F., Yuan H.X., Dai J.L., Cao A.Z., Xing L., Li H. Cereal cyst nematode resistance gene CreV, effective against Heterodera filipjevi, transferred from chromosome 6VL of Dasypyrum villosum, to bread wheat. Mol. Breeding, 2016, 36(9): 122 ( )
  • DOI: 10.1007/s11032-016-0549-9
  • Li H., Jiang B., Wang J., Lu Y., Zhang J., Pan C., Yang X., Li X., Liu W., Li L. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theor. Appl. Genet., 2016, 130(1): 109-121 ( )
  • DOI: 10.1007/s00122-016-2797-9
  • Jiang B., Liu T., Li H., Han H., Li L., Zhang J., Yang X., Zhou S., Li X., Liu W. Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum chromosome 2P. Front. Plant Sci., 2018, 9: 817 ( )
  • DOI: 10.3389/fpls.2018.00817
  • Luan Y., Wang X., Liu W., Li C., Zhang J., Gao A., Wang Y., Yang X., Li L. Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta, 2010, 232(2): 501-510 ( )
  • DOI: 10.1007/s00425-010-1187-9
  • Ye X., Lu Y., Liu W., Chen G., Han H., Zhang J., Yang X., Li X., Gao A., Li L. The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-Agropyron cristatum chromosome 5A/6P translocation lines. Theor. Appl. Genet., 2015, 128(5): 797-811 ( )
  • DOI: 10.1007/s00122-015-2466-4
  • Song L., Lu Y., Zhang J., Pan C., Yang X., Li X., Liu W., Li L. Cytological and molecular analysis of wheat-Agropyron cristatum translocation lines with 6P chromosome fragments conferring superior agronomic traits in common wheat. Genome, 2016, 59(10): 840-850 ( )
  • DOI: 10.1139/gen-2016-0065
  • Ma H., Zhang J., Zhang J., Zhou S., Han H., Liu W., Yang X., Li X., Li L. Development of P genome-specific SNPs and their application in tracing Agropyron cristatum introgressions in common wheat. The Crop Journal, 2018, 7(2): 151-162 ( )
  • DOI: 10.1016/j.cj.2018.07.003
  • Lu M., Lu Y., Li H., Pan C., Guo Y., Zhang J., Yang X., Li X., Liu W., Li L. Transferring desirable genes from Agropyron cristatum 7P chromosome into common wheat. PLoS ONE, 2016, 11(7): e0159577 ( )
  • DOI: 10.1371/journal.pone.0159577
  • Liu Z.W., Wang R.R.C., Carman J.G. Hybrids and backcross progenies between wheat (Triticum aestivum L.) and apomictic Australian wheatgrass : karyotypic and genomic analyses. Theor. Appl. Genet., 1994, 89(5): 599-605 ( )
  • DOI: 10.1007/bf00222454
  • Oliver R.E., Cai X., Wang R.C., Xu S.S., Friesen T.L. Resistance to tan spot and Stagonospora nodorum blotch in wheat-alien species derivatives. Plant Dis., 2008, 92(1): 150-157 ( )
  • DOI: 10.1094/PDIS-92-1-0150
  • Dou Q.W., Lei Y.T., Li X.M., Mott I.W., Wang R.R.C. Characterization of alien grass chromosomes in backcross derivatives of Triticum aestivum-Elymus rectisetus hybrids by using molecular markers and multi-color FISH/GISH. Genome, 2012, 55: 337-347 ( )
  • DOI: 10.1139/g2012-018
  • Cainong J., Bockus W., Feng Y., Chen P., Qi L., Sehgal S., Danilova T., Koo D., Friebe B., Gill B. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theor. Appl. Genet., 2015, 128(6): 1019-1027 ( )
  • DOI: 10.1007/s00122-015-2485-1
  • Zeng J., Cao W., Hucl P., Yang Y., Xue A., Chi D., Fedak G. Molecular cytogenetic analysis of wheat-Elymus repens introgression lines with resistance to Fusarium head blight. Genome, 2013, 56(1): 75-82 ( )
  • DOI: 10.1139/gen-2012-0130
  • Fedak G., Cao W., Wolfe D., Chi D., Xue A. Molecular characterization of Fusarium resistance from Elymus repens introgressed into bread wheat. Cytology and Genetics, 2017, 51(2): 130-133 ( )
  • DOI: 10.3103/s0095452717020025
  • Friebe B., Wilson D.L., Raupp W.J., Gill B.S., Brown-Guedira G.L. Notice of release of KS04WGRC45 leaf rust-resistant hard white winter wheat germplasm. Annu. Wheat Newsl., 2005, 51: 188-189.
  • Лошакова П.О., Фисенко А.В., Калмыкова Л.П., Кузнецова Н.Л., Упелниек В.П. Межродовые гибриды ½ Trititrigia cziczinii ½ Elymus farctus и перспективы их использования в селекции. Достижения науки и техники АПК, 2018: 32(9): 28-31.
  • Wilkinson M.D., King R., Grimaldi R. Sequence Diversity and identification of novel puroindoline and grain softness protein alleles in Elymus, Agropyron and related species. Diversity, 2018, 10(4): 114 ( )
  • DOI: 10.3390/d10040114
  • Yu Z., Wang H., Xu Y., Li Y., Lang T., Yang Z., Li G. Characterization of chromosomal rearrangement in new wheat-Thinopyrum intermedium addition lines carrying Thinopyrum-specific grain hardness genes. Agronomy, 2019, 9(1): 18 ( )
  • DOI: 10.3390/agronomy9010018
  • Kolchanov N.A., Kochetov A.V., Salina E.A., Pershina L.A. Khlestkina E.K., Shumny V. K. Status and prospects of marker-assisted and genomic plant breeding. Herald of the Russian Academy of Sciences, 2017, 87(2): 125-131 ( )
  • DOI: 10.1134/s1019331617020113
  • Baral K., Coulman B., Biligetu B., Fu Y.-B. Genotyping-by-sequencing enhances genetic diversity analysis of crested wheatgrass Int. J. Mol. Sci., 2018, 19(9): 2587 ( )
  • DOI: 10.3390/ijms19092587
  • Liu L., Luo Q., Teng W., Li B., Li H., Li Y., Li Z., Zheng Q. Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology. Planta, 2018, 247(5): 1099-1108 ( )
  • DOI: 10.1007/s00425-018-2845-6
Еще
Статья обзорная